RESUMO
The preparation of organic-inorganic composite coatings with the purpose to increase the bioactivity of bioinert metal implants was investigated. As substrates, glass plates and rough titanium surfaces (Ti-SLA) were employed. The method comprises the deposition of polyelectrolyte multilayers (PEMLs) followed by immersion of the coated substrate into a calcifying solution of low supersaturation (MCS). Single or mixed PEMLs were constructed from poly-L-lysine (PLL) alternating with poly-L-glutamate, (PGA), poly-L-aspartate (PAA), and/or chondroitin sulfate (CS). ATR-FTIR spectra reveal that (PLL/PGA)10 multilayers and mixed multilayers with a (PLL/PGA)5 base contain intermolecular ß-sheet structures, which are absent in pure (PLL/PAA)10 and (PLL/CS)10 assemblies. All PEML coatings had a grainy topography with aggregate sizes and size distributions increasing in the order: (PLL/PGA)n < (PLL/PAA)n < (PLL/CS)n. In mixed multilayers with a (PLL/PGA)n base and a (PLL/PAA)n or (PLL/CS)n top, the aggregate sizes were greatly reduced. The PEMLs promoted calcium phosphate nucleation and early crystal growth, the intensity of the effect depending on the composition of the terminal layer(s) of the polymer. In contrast, crystal morphology and structure depended on the supersaturation, pH, and ionic strength of the MCS, rather than on the composition of the organic matrix. Crystals grown on both uncoated and coated substrates were mostly platelets of calcium deficient carbonate apatite, with the Ca/P ratio depending on the precipitation conditions.
Assuntos
Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Metais/química , Polímeros/química , Ácido Aspártico/química , Cristalização/métodos , Ácido Glutâmico/química , Concentração de Íons de Hidrogênio , Lisina/química , Concentração Osmolar , Próteses e Implantes , Propriedades de Superfície , Titânio/químicaRESUMO
Liquid nanovehicles are gaining interest in drug delivery because of the high solubilization capacity of bioactives at their interface and enhanced permeation of compounds across physiological membranes. However, the dermal application of liquid nanovehicles is still limited. The goal of this research is to develop a dermal delivery system based on embedding of liquid nanovehicles into polymeric films, which will allow controlled release of the nanodroplets with the solubilized drug. In this study, we describe the incorporation of empty and curcumin-loaded nanodomains into polymeric film. The novel technology results in formation of homogeneous, transparent and elastic films with high (up to 85 wt%) loading capacity of nanodomains. The fundamental structural characterizations show that nanodomain structures embedded in the dry film are spontaneously reformed during the dermal application with similar droplets size of 10 nm. Ex-vivo release studies were performed on Franz diffusion cells and demonstrated a significant permeation of curcumin through the pig skin. This novel film technology can serve as a "solid platform reservoir" for liquid nanovehicles which enables controlled release of nanodroplets with solubilized bioactive.
Assuntos
Curcumina , Animais , Difusão , Sistemas de Liberação de Medicamentos , Polímeros , Pele , SuínosRESUMO
One of the theories for the reduction of cholesterol (CH) in the blood stream by the consumption of phytosterols (PS) states that these two types of sterols compete for solubilization within the dietary mixed micelles (DMM). In this study, a fully dilutable nonionic microemulsion system was used as a model to explain a possible competitive solubilization mechanism of CH and PS molecules using an electron paramagnetic resonance (EPR) technique that reveals relevant intramicellar properties. The effect of the solubilized sterols on the structural changes occurring in the vicinity of the surfactant head groups or closer to the oil phase was examined by controlling the pH of the environment, which influences the probe locus between the surfactant molecules. The results indicate that the structure transformations in the surfactant layer closer to the vicinity of the head groups region are more pronounced than the structural changes occurring in the region between the surfactant tails closer to the oil phase, except for the oil-in-water (O/W) micelles region. The study also shows that when each of the sterols is solubilized alone, they occupy different solubilization sites within the microemulsion nanostructures, in comparison to their solubilization together. This behavior is most pronounced in 3:1 (wt ratio) CH/PS systems. The main conclusion is that cosolubilization of these sterols leads to competitive solubilization between the surfactant tails closer to the oil phase locus, where the CH molecules are pushed toward the interface by the PS molecules. This conclusion might better explain the competitive solubilization of the two sterols in the human digestive tract.
Assuntos
Colesterol/química , Emulsões/química , Nanopartículas/química , Fitosteróis/química , Soluções Tampão , Espectroscopia de Ressonância de Spin Eletrônica , Excipientes , Óleos/química , Polissorbatos , Solubilidade , Solventes , Tensoativos/químicaRESUMO
Evidence on the role of phosphatidylcholine (PC) as a membrane permeability enhancer was the driving force in forming new liquid nanosized (modified microemulsions) oral delivery system containing PC molecules. In this study we have demonstrated the feasibility of constructing phase diagrams with a large isotropic regions capable of being fully diluted with water. The microemulsions were stabilized with mixtures composed of PC and nonionic surfactant (polyoxyethylene-40 hydrogenated castor oil, HECO40) and short-chain organic acid as cosurfactant/cosolvent. When propionic acid served as the cosurfactant/cosolvent, the isotropic region was at its maximum (ca. 72% of the total phase diagram area). The presence of a blend of PC and HECO40 seems to have synergistic effects, forming an isotropic region comprising 72% of the area of the phase diagram, in comparison to 20 and 50% in systems stabilized by PC and HECO40, alone, respectively. The role of the PC molecules in the formation of those microemulsions is demonstrated by comparing three soy lecithins. Lecithin with a high PC content forms larger isotropic regions with more "free dilution" lines. Several nonionic surfactants have been investigated, yet only HECO40 seems to have a packing parameter suitable for the formation of large isotropic U-type systems.
Assuntos
Álcoois , Emulsões/química , Compostos Orgânicos , Fosfatidilcolinas/química , Fosfolipídeos/química , Propilenoglicol , Administração Oral , Óleo de Rícino , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade , Fosfatidilcolinas/administração & dosagem , Polietileno , Solubilidade , Tensoativos , ÁguaRESUMO
Omega fatty acids, mainly the triglyceride of docosahexaenoic acid (TG-DHA), are considered important nutraceuticals. These compounds are water-insoluble and their transport across membranes depends on their carriers. Dendrimers are known as drug carriers across cell membranes and also as permeation enhancers. The solubilization of TG-DHA and dendrimer into a microemulsion (ME) system serving as a carrier could be used for a targeted delivery in the future. The interactions between TG-DHA and second generation poly(propyleneimine) dendrimers (PPI-G2) and their effect on structural transitions of ME were explored along the water dilution line using electron paramagnetic resonance and pulsed-gradient spin-echo NMR along with other analytical techniques. The microviscosity, order parameter, and micropolarity of all studied systems decrease upon water dilution. Incorporation of TG-DHA reduces the microviscosity, order, and micropolarity, whereas PPI-G2 leads to an increase in these parameters. The effect of PPI-G2 is more pronounced at relative high contents (1 and 5wt%) where PPI-G2 interacts with the hydrophilic headgroups of the surfactants. In the macroscale, the effects of TG-DHA and PPI-G2 differ mostly in the bicontinuous region, where macroviscosity increases upon TG-DHA incorporation and decreases upon solubilization of 5wt% PPI-G2. From DSC measurements it was concluded that in the presence of TG-DHA the PPI-G2 is intercalated easily at the interface.
Assuntos
Dendrímeros/química , Ácidos Docosa-Hexaenoicos/química , Polipropilenos/química , Tensoativos/química , Triglicerídeos/química , Água/química , Portadores de Fármacos , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Propriedades de Superfície , ViscosidadeRESUMO
Water-dilutable food-grade microemulsions consisting of ethoxylated sorbitan esters, and in some cases blended with other emulsifiers, water, (R)-(+)-limonene, ethanol, and propylene glycol, have been prepared. These microemulsions are of growing interest to the food industry as vehicles for delivering and enhancing solubilization of natural food supplements with nutritional and health benefits. Lycopene, an active natural lipophilic antioxidant from tomato, has solubilized in water-in-oil, bicontinuous, and oil-in-water types of microemulsions up to 10 times the oil [(R)-(+)-limonene] dissolution capacity. The effects of aqueous-phase dilution, nature of surfactant (hydrophilic-lypophilic balance), and mixed surfactant on solubilization capacity and solubilization efficiency were studied. Structural aspects studied by self-diffusion NMR were correlated to the solubilization capacity, and transformational structural changes were identified.
Assuntos
Carotenoides/química , Emulsões , Alimentos , Carotenoides/administração & dosagem , Cicloexenos , Suplementos Nutricionais , Etanol , Limoneno , Licopeno , Veículos Farmacêuticos , Polissorbatos , Propilenoglicol , Solubilidade , Tensoativos , TerpenosRESUMO
The effect of second, third, and fifth generations of poly(propylene imine) glycodendrimers-open maltose shell (PPI-Mal) on reverse hexagonal (HII) mesophase and on the release of sodium diclofenac (Na-DFC) drug was investigated. The HII mesophase comprised glycerol monooleate (GMO)/tricaprylin (TAG) in a weight ratio of 90/10 and 20 wt % water (+0.5 wt % PPI-Mal of each generation) without or with 0.25 wt % (Na-DFC). The microstructural characteristics of these systems were determined by small-angle X-ray scattering; attenuated total reflectance Fourier transform infrared was used to characterize the molecular level interactions and the location of the PPI-Mal. Third-and fifth-generation PPI-Mal, because of their maltose groups, interact mainly with the bulk water within the cylinders of the HII and strongly bind the water molecules, as manifested by the decrease in the lattice parameter and dehydration of the lipid headgroups. Co-solubilization of Na-DFC with the third and fifth generations caused competition of the two host compounds for water binding and induced relocation of the drug from the bulk water to the GMO-water interface. In vitro release of Na-DFC from the HII showed that the release process was faster in the systems with third- and fifth-generation PPI-Mal compared with the control and second-generation systems.
Assuntos
Dendrímeros/química , Diclofenaco/metabolismo , Cristais Líquidos/química , Caprilatos/química , Preparações de Ação Retardada , Diclofenaco/química , Glicerídeos/química , Polipropilenos/química , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Triglicerídeos/química , Água/química , Difração de Raios XRESUMO
The role of 2nd generation polypropyleneimine (PPIG2) dendrimer in controlling the release of gallic acid (GA) as a model drug from lyotropic liquid crystal was explored. GA (0.2wt%) was solubilized in three types of mesophases: lamellar (Lα), cubic (space group of Ia3d, Q(G)), and reverse hexagonal (HII), composed of GMO and water (and d-α-tocopherol, or tricaprylin in the case of HII mesophases). Small angle X-ray scattering (SAXS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) along with UV spectrophotometry were utilized to elucidate the structure modifications and release resulting from the cosolubilization of GA and PPIG2. Solubilization of PPIG2 into Lα and Q(G) phases caused transformation of both structures to HII. The diffusion of GA out of the mesophases was found to be dependent on water content and PPIG2 concentration. Rapid release from Lα+PPIG2 and Q(G)+PPIG2 mesophases was recorded. The release from both HII mixtures (with d-α-tocopherol and tricaprylin) was shown to be dependent on the type of oil. Release studies conducted for 72h showed that GA release can be modulated and sustained by the presence of PPIG2, supposedly due to the electrostatic interactions between the dendrimer and the drug molecule.
Assuntos
Dendrímeros/química , Sistemas de Liberação de Medicamentos , Ácido Gálico/administração & dosagem , Polipropilenos/química , Portadores de Fármacos/química , Ácido Gálico/farmacocinética , Glicerídeos , Cristais Líquidos/química , Estrutura Molecular , Nanoestruturas/química , Espalhamento a Baixo Ângulo , Solubilidade , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Água , Difração de Raios XRESUMO
A complex system, based on a dendrimer solubilized in the aqueous core of water-in-oil microemulsion, may combine the advantages of both dendrimers and microemulsions to provide better control of drug release. We report for the first time the use of EPR technique to determine the effect of solubilized dendrimer on the structure of the microemulsion. The solubilized poly(propyleneimine) (PPI-G2) interacts with sodium bis(2-ethylhexyl) sulfosuccinate (AOT). EPR analysis provided information on polarity, microviscosity, and molecular order of the systems. Polarity and microviscosity increased from unloaded water-in-oil microemulsion to the system loaded with 0.2 wt % PPI-G2, but remained unchanged with higher PPI-G2 loads. The degree of order also increased with 0.2 wt % PPI-G2 with only minor additional increase with larger quantities (25 wt %) of PPI-G2. Variations in pH only slightly affected the structure of microemulsion in the absence and presence of the loaded dendrimers. Aliphatic oils with longer lipophilic chains enhanced the structural order of the microemulsion. On increasing water content, polarity and degree of order increased. PPI-G2 dendrimer in small loads is attracted by the negatively charged AOT and thus intercalates in the interface of the droplets. Yet, at higher PPI-G2 loads, the excess molecules are solubilized in the water core.
Assuntos
Dendrímeros/química , Nanopartículas/química , Óleos/química , Polipropilenos/química , Água/química , Espectroscopia de Ressonância de Spin Eletrônica , Emulsões/química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Solubilidade , Propriedades de SuperfícieRESUMO
Micro- and macrostructural behaviors of three different lyotropic liquid crystals (LLCs) loaded with a dendrimer, namely second generation poly(propylene imine) (PPI-G2), were studied by means of rheology and electron paramagnetic resonance (EPR). The three mesophases were L(α), Q(224), and H(II) composed of glycerol monooleate (GMO) and water-PPI-G2 solution (and d-α-tocopherol (vitamin E) in the case of H(II)). We characterized the impact of PPI-G2 interactions with the components of the host mesophases on their structural characteristics on different length scales. The incorporation of PPI-G2 within the L(α) and H(II) systems induced the formation of more elastic hexagonal systems with a "solidlike" behavior, while in the Q(224) system a different trend with a "liquidlike" behavior was observed. As a result, the dendrimer induced a remarkable change in both the structural and viscoelastic properties of the systems. Hence, the microenvironment in the interface region within the systems was monitored by computer-aided EPR using 5-doxylstearic acid (5-DSA) as a pH-dependent probe. The microviscosity (τ) and order (S) of systems were found to be sensitive to the PPI-G2 presence: when PPI-G2 concentration increased, τ and S increased in both the L(α) and Q(224) systems. In the H(II) systems two trends were observed, reflecting a decrease in τ and S up to 10 wt % PPI-G2 and subsequently their increase at higher dendrimer concentrations. It was assessed that PPI-G2 interacted strongly with the GMO hydroxyl groups in the L(α) phase, with the water molecules in the Q(224) systems. In the H(II) mesophase strong interactions with both the water and GMO hydroxyl molecules were detected.
Assuntos
Dendrímeros/química , Cristais Líquidos/química , Polipropilenos/química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , ReologiaRESUMO
The incorporation of dendrimer into three lyotropic liquid crystalline (LLCs) mesophases is demonstrated for the first time. A second generation (G2) of poly(propylene imine) dendrimer (PPI) was solubilized into lamellar, diamond reverse cubic, and reverse hexagonal LLCs composed of glycerol monooleate (GMO), and water (and D-α-tocopherol in the H(II) system). The combination of PPI with LLCs may provide an advantageous drug delivery system. Cross-polarized light microscope, small-angle X-ray scattering (SAXS), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were utilized to study the structural behavior of the mesophases, the localization of PPI within the system, and the interactions between the guest molecule and the system's components. It was revealed that PPI-G2 functioned as a "water pump", competing with the lipid headgroups for water binding. As a result, L(α)âH(II) and Q(224)âH(II) structural shifts were detected (at 10 wt % PPI-G2 content), probably caused by the dehydration of monoolein headgroups and subsequent increase of the lipid's critical packing parameter (CPP). In the case of H(II), as a result of the balance between the dehydration of the monoolein headgroups and the significant presence of PPI within the interfacial region, increasing the quantity of hydrogen bonds, no structural transitions occurred. ATR-FTIR analysis demonstrated a downward shift of the H-O-H (water), as a result of PPI-G2 embedment, suggesting an increase in the mean water-water H-bond angle resulting from binding PPI-G2 to the water network. Additionally, the GMO hydroxyl groups at ß- and γ-C-OH positions revealed a partial interaction of hydrogen bonds with N-H functional groups of the protonated PPI-G2. Other GMO interfacial functional groups were shown to interact with the PPI-G2, in parallel with the GMO dehydration phenomenon. In the future, these outcomes can be used to design advanced drug delivery systems, allowing administration of dendrimers as a therapeutic agent from LLCs.
Assuntos
Dendrímeros/química , Cristais Líquidos/química , Glicerídeos/química , Polipropilenos/química , Água/químicaRESUMO
Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ(10)). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ(10) increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilutions. When added to the micellar system, CoQ(10) forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ(10) destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases. Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ(10); as a result CoQ(10) crystallization is retarded.
Assuntos
Emulsões/química , Ácidos Graxos Ômega-3/química , Ubiquinona/análogos & derivados , Varredura Diferencial de Calorimetria , Condutividade Elétrica , Espectroscopia de Ressonância Magnética , Micelas , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Espalhamento a Baixo Ângulo , Solubilidade , Tensoativos/química , Temperatura , Ubiquinona/química , Viscosidade , Difração de Raios XRESUMO
Advanced drug delivery nanosystems (aDDnSs) combining liposomal and dendritic materials have only recently appeared in the research field of drug delivery. The nature and localization of the interactions between the components of such systems are not yet fully described. In this study, liposomes are combined with hyperbranched polyesters for the development of new aDDnSs. The polymer-lipid interactions along with their dependence on the polyesters pseudogeneration number and the liposomal lipid composition have been examined. The results indicate that the interaction between the materials takes place in the headgroup region, where H-bonds between the polymers terminal hydroxyls and the phospholipids phosphate moiety are formed. Due to the polymers' compact imperfect structure, which varies with pseudogeneration number, no linear trends are observed with increasing pseudogeneration number. Moreover, it is shown that high percentages of cholesterol in the lipid bilayer affect the penetration of the polymers in the headgroup region.
Assuntos
Lipossomos/química , Nanotecnologia , Polímeros/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The present work investigates, for the first time, a system comprising a dendrimer incorporated into the water core of water-in-oil (W/O) microemulsion (ME). A second generation (G-2) poly(propyleneimine) dendrimer (PPI) was solubilized into W/O ME composed of AOT (sodium bis(2-ethylhexyl)sulfosuccinate), heptane, and water. Such a model system possessing the benefits of both dendrimers and ME, can potentially offer superior control of drug administration. The localization of PPI within the system, its specific interactions with the components of the carrier, and its effect on the ME structure was explored by SAXS, DSC, ATR-FTIR, and electrical conductivity measurements. Considerable water binding by PPI, accompanied by partial dehydration of AOT polar heads, was detected by ATR-FTIR and DSC analysis, suggesting that PPI acted as a "water pump". In addition, SAXS measurements showed periodicity increase and disordering of the droplets. Hence, localization of PPI within the core and interfacial regions of the droplets was assumed. Direct electrostatic interactions between PPI and the sulfonate group were not noticed, since the dendrimer molecules were mostly not protonated in the current basic environment at pH 12. However, slight hydrogen bonding between PPI and the S=O groups allowed the dendrimer to behave as a "spacer" between sodium and sulfonate ions. This affected the electrical conductivity behavior of the system, revealing that PPI favored the percolation process. Most likely, PPI decreased the rigidity of the interfacial layer, facilitating the diffusion of sodium ions through the channels. The characterized model system can be advantageously utilized to design specific delivery vehicles, allowing administration of dendrimers as a therapeutic agent from host MEs.
Assuntos
Dendrímeros/química , Emulsões/química , Polipropilenos/química , Varredura Diferencial de Calorimetria , Condutividade Elétrica , Heptanos/química , Concentração de Íons de Hidrogênio , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Succinatos/química , Água/químicaRESUMO
The present work investigates the detailed molecular structure of the H(II) mesophase of GMO/tricaprylin/phosphatidylcholine/water system in the presence of hydrophobic model peptide Cyclosporin A (CSA) via ATR-FTIR analysis. The conformation of the peptide in the hexagonal mesophase, as well as its location and specific interactions with the components of the carrier, were studied. Incorporation of phosphatidylcholine to the ternary GMO/tricaprylin/water system caused competition for water binding between the hydroxyl groups of GMO and the phosphate groups of the phosphatidylcholine (PC) leading to dehydration of the GMO hydroxyls in favor of phospholipid hydration. Analysis of CSA solubilization effect on the H(II) mesophase revealed a significant increase in the strength of hydrogen bonding with surfactant hydrogen-bonded carbonyls, indicating interaction of the peptide with the CO groups of the surfactants. The peptide probably caused partial replacement of the intramolecular hydrogen bonds of the mesophase carbonyl groups with intermolecular hydrogen bonds of these carbonyl groups with the peptide. Furthermore, analysis of the Amide I' peak in the FTIR spectra of the peptide demonstrated that two pairs of its internal hydrogen bonds are disrupted when it is incorporated. The partial disruption of the internal hydrogen bonds seems to cause an outward rotation of the peptide amide groups involved, resulting in more efficient intermolecular hydrogen-bonding ability. Apparently, this conformational change increased the hydrophilic properties of CSA, even making it susceptible to a weak interaction with the GMO hydroxyl groups in the interfacial region.
Assuntos
Ciclosporina/química , Portadores de Fármacos/química , Cristais Líquidos/química , Tensoativos/química , Caprilatos/química , Ciclosporina/administração & dosagem , Ciclosporina/farmacocinética , Glicerídeos/química , Lipossomos , Estrutura Molecular , Transição de Fase , Fosfatidilcolinas/química , Conformação Proteica , Espalhamento a Baixo Ângulo , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Triglicerídeos/química , Água/químicaRESUMO
Enhanced systemic absorption in vivo and percutaneous penetration in vitro was demonstrated after transdermal administration of diclofenac sodium formulated in U-type microemulsion. Diclofenac sodium was solubilized in a typical four-component system consisting of an oil, polyoxyethylene-10EO-oleyl alcohol (Brij 96V) as the surfactant, and 1-hexanol along water dilution line W46 (40 wt % surfactant and 60 wt % oil phase before water titration). Viscosity and small angle X-ray scattering measurements have evidenced bicontinuous structures within water fractions of 0.25 and 0.5 along the dilution line. Self-diffusion NMR studies showed that drug molecules accumulated in the interfacial film and, to some extent, dissolved in the oil. Relative to a commercial macro-emulsion cream (Voltaren Emulgel), microemulsions containing paraffin oil or isopropyl myristate increased the in vivo transdermal penetration rate of diclofenac by two order of magnitude, whereas the rat plasma levels were increased by one order of magnitude. The in vitro data obtained from excised rat skin were comparable to the in vivo results, but suffered from discrepancies from the ideal in vivo-in vitro correlation, which might be explained by optimal in vitro conditions of perfusion and hydration. It has also been found that when jojoba oil is formulated as the oil phase in the microemulsion, the penetration rate of the drug decreases significantly. Based on the three-dimensional structure of jojoba oil, the wax is presumed to prevent the drug from being freely diffused into the skin while migrating from the interfacial film into the continuous oil phase.
Assuntos
Anti-Inflamatórios não Esteroides/química , Diclofenaco/farmacocinética , Excipientes/química , Absorção Cutânea , Administração Cutânea , Animais , Diclofenaco/administração & dosagem , Emulsões , Hexanóis/química , Masculino , Miristatos/química , Óleos/química , Parafina/química , Permeabilidade , Óleos de Plantas/química , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Tensoativos/química , Viscosidade , Ceras/químicaRESUMO
In this research, we studied the factors that control formation of GMO/tricaprylin/water hexosomes and affect their inner structure. As a stabilizer of the soft particles dispersed in the aqueous phase, we used the hydrophilic nonionic triblock polymer Pluronic 127. We demonstrate how properties of the hexosomes, such as size, structure, and stability, can be tuned by their internal composition, polymer concentration, and processing conditions. The morphology and inner structure of the hexosomes were characterized by small-angle X-ray scattering, cryo-transmission electron microscope, and dynamic light scattering. The physical stability (to creaming, aggregation, and coalescence) of the hexosomes was further examined by the LUMiFuge technique. Two competing processes are presumed to take place during the formation of hexosomes: penetration of water from the continuous phase during dispersion, resulting in enhanced hydration of the head groups, and incorporation of the polymer chains into the hexosome structure while providing a stabilizing surface coating for the dispersed particles. Hydration is an essential stage in lyotropic liquid crystal (LLC) formation. The polymer, on the other hand, dehydrates the lipid heads, thereby introducing disorder into the LLC and reducing the domain size. Yet, a critical minimum polymer concentration is necessary in order to form stable nanosized hexosomes. These competing effects require the attention of those preparing hexosomes. The competition between these two processes can be controlled. At relatively high polymer concentrations (1-1.6 wt % of the total formulation of the soft particles), the hydration process seems to occur more rapidly than polymer adsorption. As a result, smaller and more stable soft particles with high symmetry were formed. On the other hand, when the polymer concentration is fixed at lower levels (<1.0 wt %), the homogenization process encourages only partial polymer adsorption during the dispersion process. This adsorption is insufficient; hence, maximum hydration of the surfactant head group is reached prior to obtaining full adsorption, resulting in the formation of less ordered hexosomes of larger size and lower stability.