Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116378, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663191

RESUMO

Pesticide residues and microplastics (MPs) in agricultural soils are two major concerns for soil health and food safety. The degradation of chlorpyrifos (CPF), an organophosphorus pesticide, releases phosphates. This process may be affected by the presence of MPs in the soil. The combination of CPF and MPs presence in the soil may thus produce interaction effects that alter the soil phosphorus (P) balance. This study explores the degradation pathways of CPF (6 mg kg-1, 12 mg kg-1 of CPF addition) in soils with different levels of polylactic acid MPs (PLA-MPs) (0.0 %, 0.1 %, 0.5 %, 1.0 % w/w), and analyzes soil P fractions and phosphatase enzyme activities to investigate soil P bioavailability under different treatments. Results show that the degradation of CPF fits to a first-order decay model, with half-lives (DT50) ranging from 11.0 to 14.8 d depending on PLA-MPs treatment. The concentration of its metabolite 3, 5, 6-trichloropyridine 2-phenol (TCP) reached a peak of 0.93-1.67 mg kg-1 within 7-14 days. Similarly, the degradation of CPF led to a significant transient increase in P bioavailability within 3-7 days (p < 0.05), with a peak range of 22.55-26.01 mg kg-1 for Olsen-P content and a peak range of 4.63-6.76 % for the proportions of available P fractions (H2O-P+NaHCO3-P+NaOH-P), before returning to prior levels (Olsen-P: 11.28-19.52 mg kg-1; available soil P fractions: 4.15-5.61 %). CPF degradation (6 mg kg-1) was significantly inhibited in soil with 1.0 % PLA-MPs addition. The effects of MPs and CPF on soil P fractions occur at different time frames, implying that their modes of action and interactions with soil microbes differ.


Assuntos
Clorpirifos , Microplásticos , Fósforo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Fósforo/análise , Solo/química , Disponibilidade Biológica , Biodegradação Ambiental , Poliésteres/química , Poliésteres/metabolismo , Inseticidas/análise
2.
Environ Sci Technol ; 57(48): 20138-20147, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934470

RESUMO

Microplastics (MPs) pollution and dissolved organic matter (DOM) affect soil quality and functions. However, the effect of MPs on DOM and underlying mechanisms have not been clarified, which poses a challenge to maintaining soil health. Under environmentally relevant conditions, we evaluated the major role of polypropylene particles at four micron-level sizes (20, 200, and 500 µm and mixed) in regulating changes in soil DOM content. We found that an increase in soil aeration by medium and high-intensity (>0.5%) MPs may reduce NH4+ leaching by accelerating soil nitrification. However, MPs have a positive effect on soil nutrient retention through the adsorption of PO43- (13.30-34.46%) and NH4+ (9.03-19.65%) and their leached dissolved organic carbon (MP-leached dissolved organic carbon, MP-DOC), thereby maintaining the dynamic balance of soil nutrients. The regulating ion (Ca2+) is also an important competitor in the MP-DOM adsorption system, and changes in its intensity are dynamically involved in the adsorption process. These findings can help predict the response of soil processes, especially nutrient cycling, to persistent anthropogenic stressors, improve risk management policies on MPs, and facilitate the protection of soil health and function, especially in future agricultural contexts.


Assuntos
Microplásticos , Solo , Matéria Orgânica Dissolvida , Plásticos , Carbono , China
3.
Environ Res ; 204(Pt A): 111938, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34478726

RESUMO

Agricultural microplastic pollution has become a growing concern. Unfortunately, the impacts of microplastics (MPs) on agricultural soil carbon and nitrogen dynamics have not been sufficiently reported. In an attempt to remedy this, we conducted a 105-day out-door mesocosm experiment in a soil-plant system using sandy soils amended with two types of MPs, low-density polyethylene (LDPE-MPs) and biodegradable (Bio-MPs), at concentrations of 0.0% (control), 0.5%, 1.0%, 1.5%, 2.0% and 2.5% (w/w, weight ratio of microplastics to air-dry soil). Soil organic matter (SOM), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), available nitrogen (AN) of N-NH4+ and N-NO3-, and dissolved organic nitrogen (DON) were measured on day 46 (D46) and 105 (D105) of the experiment. SOM was also measured after microplastics were mixed into soils (D0). For LDPE-MPs treatments, SOM on D0, D46 and D105 showed no significant differences, while for Bio-MPs treatments, SOM significantly (p < 0.05) decreased from D0 to D46. Compared to the control, soil POXC was significantly (p = 0.001) lowered by 0.5%, 1.0% and 2.5% LDPE-MPs and ≥ 1.0% Bio-MPs on D105. LDPE-MPs showed no significant effects on soil DOC and nitrogen cycling. 2.0% and 2.5% Bio-MPs showed significantly higher (p < 0.001) DOC and DON (on D46 and D105) and ≥1.5% Bio-MPs showed significantly lower (p = 0.02) AN (on D46). Overall, Bio-MPs exerted stronger effects on the dynamics of soil carbon and nitrogen cycling. In conclusion, microplastics might pose serious threats to agroecosystems and further research is needed.


Assuntos
Microplásticos , Solo , Carbono , Matéria Orgânica Dissolvida , Nitrogênio , Plásticos , Polímeros
4.
Environ Sci Technol ; 50(5): 2685-91, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26852875

RESUMO

Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, <150 µm) in litter at concentrations of 7, 28, 45, and 60% dry weight, percentages that, after bioturbation, translate to 0.2 to 1.2% in bulk soil. Mortality after 60 days was higher at 28, 45, and 60% of microplastics in the litter than at 7% w/w and in the control (0%). Growth rate was significantly reduced at 28, 45, and 60% w/w microplastics, compared to the 7% and control treatments. Due to the digestion of ingested organic matter, microplastic was concentrated in cast, especially at the lowest dose (i.e., 7% in litter) because that dose had the highest proportion of digestible organic matter. Whereas 50 percent of the microplastics had a size of <50 µm in the original litter, 90 percent of the microplastics in the casts was <50 µm in all treatments, which suggests size-selective egestion by the earthworms. These concentration-transport and size-selection mechanisms may have important implications for fate and risk of microplastic in terrestrial ecosystems.


Assuntos
Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Plásticos/toxicidade , Poluentes do Solo/toxicidade , Animais , Ecossistema , Ecotoxicologia/métodos , Exposição Ambiental , Países Baixos , Polietileno/toxicidade
5.
Sci Total Environ ; 927: 172175, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575018

RESUMO

The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain-plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain-plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature ("room temperature" & "30 °C"), carbon source ("carbon-free" & "low carbon supply"), and strain interactions ("single strains" & "strain mixtures") on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.


Assuntos
Biodegradação Ambiental , Oligoquetos , Plásticos , Animais , Poluentes do Solo/metabolismo , Microbioma Gastrointestinal , Bactérias/metabolismo , Microbiologia do Solo , Poliésteres
6.
Environ Int ; 184: 108457, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281448

RESUMO

Rural residents are exposed to both particulate and gaseous pesticides in the indoor-outdoor nexus in their daily routine. However, previous personal exposure assessment mostly focuses on single aspects of the exposure, such as indoor or gaseous exposure, leading to severe cognition bias to evaluate the exposure risks. In this study, residential dust and silicone wristbands (including stationary and personal wearing ones) were used to screen pesticides in different phases and unfold the hidden characteristics of personal exposure via indoor-outdoor nexus in intensive agricultural area. Mento-Carlo Simulation was performed to assess the probabilistic exposure risk by transforming adsorbed pesticides from wristbands into air concentration, which explores a new approach to integrate particulate (dust) and gaseous (silicone wristbands) pesticide exposures in indoor and outdoor environment. The results showed that particulate pesticides were more concentrated in indoor, whereas significantly higher concentrations were detected in stationary outdoor wristbands (p < 0.05). Carbendazim and chlorpyrifos were the most frequently detected pesticides in dust and stationary wristbands. Higher pesticide concentration was found in personal wristbands worn by farmers, with the maximum value of 2048 ng g-1 for difenoconazole. Based on the probabilistic risk assessment, around 7.1 % of farmers and 2.6 % of bystanders in local populations were potentially suffering from chronic health issues. One third of pesticide exposures originated mainly from occupational sources while the rest derived from remoting dissipation. Unexpectedly, 43 % of bystanders suffered the same levels of exposure as farmers under the co-existence of occupational and non-occupational exposures. Differed compositions of pesticides were found between environmental samples and personal pesticide exposure patterns, highlighting the need for holistic personal exposure measurements.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Praguicidas , Humanos , Praguicidas/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Gases , Silicones , Exposição Ambiental/análise , Monitoramento Ambiental/métodos
7.
Environ Pollut ; 316(Pt 1): 120483, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306883

RESUMO

Although microplastics (MPs) are ubiquitous in agricultural soil, little is known about the effects of MPs combined with pesticides on soil organisms and their biogenic transport through the soil profile. In this study, we conducted mesocosm experiments to observe the effects of microplastics (polyethylene (LDPE-MPs) and biodegradable microplastics (Bio-MPs)) and chlorpyrifos (CPF) on earthworm (Lumbricus terrestris) mortality, growth and reproduction, as well as the biogenic transport of these contaminants through earthworm burrows. The results showed that earthworm reproduction was not affected by any treatment, but earthworm weight was reduced by 17.6% and the mortality increased by 62.5% in treatments with 28% Bio-MPs. Treatments with 28% LDPE-MPs and 7% Bio-MPs combined with CPF showed greater toxicity while the treatment with 28% Bio-MPs combined with CPF showed less toxicity on earthworm growth as compared to treatments with only MPs. The treatments with 1250 g ha-1 CPF and 28% Bio-MPs significantly decreased the bioaccumulation of CPF in earthworm bodies (1.1 ± 0.2%, w w-1), compared to the treatment with CPF alone (1.7 ± 0.4%). With CPF addition, more LDPE-MPs (8%) were transported into earthworm burrows and the distribution rate of LDPE-MPs in deeper soil was increased. No effect was observed on the transport of Bio-MPs. More CPF was transported into soil in the treatments with LDPE-MPs and Bio-MPs, 5% and 10% of added CPF, respectively. In addition, a lower level of the CPF metabolite 3,5,6-trichloropyridinol was detected in soil samples from the treatments with MPs additions than without MP additions, indicating that the presence of MPs inhibited CPF degradation. In conclusion, Bio-MPs caused significant toxicity effects on earthworms and the different types of MPs combined with CPF affected earthworms differently, and their transport along the soil profile. Thus, further research is urgently needed to understand the environmental risks of MPs and MP-associated compounds in the soil ecosystem.


Assuntos
Clorpirifos , Oligoquetos , Poluentes do Solo , Animais , Solo , Microplásticos , Clorpirifos/toxicidade , Plásticos/toxicidade , Polietileno/farmacologia , Ecossistema , Areia , Poluentes do Solo/análise
8.
Environ Pollut ; 331(Pt 1): 121910, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247767

RESUMO

Microplastics (MPs) in soil undergo different aging processes such as photoaging, mechanical abrasion and biodegradation, leading to alterations in the surface properties of MPs. In this study, we investigated the adsorption-desorption of chlorpyrifos (CPF) on pristine and UV light-aged low-density polyethylene (LDPE) and biodegradable (Bio) MPs that were derived from plastic mulch films. We also tested the bioconcentration of pristine and aged MPs (LDPE- and Bio-MPs aged under UV light and LDPE-MPs aged in three different soils) associated with CPF by earthworms (Lumbricus terrestris). The results showed that UV-aged MPs showed higher CPF adsorption capacities than pristine MPs, with the adsorption capacities at 184.9 ± 5.3, 200.5 ± 1.8, 193.0 ± 8.7, and 215.9 ± 1.1 µg g-1 for pristine LDPE-, UV-aged LDPE-, pristine Bio- and UV-aged Bio-MPs, respectively. The desorption rate of CPF from UV-aged LDPE-MPs within 48 h was lower than the desorption from pristine ones (28.8 ± 7.7% vs. 40.0 ± 3.9%), while both pristine and UV-aged Bio-MPs showed very low CPF desorption rates. A 4-day Petri dish experiment showed that UV-aged MPs were significantly less concentrated in earthworm casts than pristine counterparts (52% and 36% lower for UV-aged LDPE- and Bio-MPs), while UV-aged MPs with adsorbed CPF were concentrated significantly more than UV-aged MPs without CPF. Interestingly, LDPE-MPs aged in soil with a high carbon, nitrogen, and carbon-to-nitrogen ratio were significantly more concentrated in earthworm casts than pristine LDPE-MPs. In conclusion, UV-aged MPs acted as stronger vectors for CPF than pristine MPs. The bioconcentration of MPs differed significantly due to microplastic aging, as well as the combined effect with CPF. Moreover, LDPE-MPs aged in soil with enriched carbon and nitrogen were significantly concentrated in earthworm casts. Further studies on the environmental behaviours of aged MPs associated with other pollutants in soil, especially soils high in carbon and nitrogen, are needed.


Assuntos
Clorpirifos , Oligoquetos , Animais , Microplásticos , Plásticos , Polietileno , Adsorção , Bioacumulação , Solo
9.
Sci Total Environ ; 865: 161207, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581270

RESUMO

Biodegradable plastics (BDPs) have been introduced to replace conventional fossil-based non-biodegradable plastics in agricultural production to reduce the accumulation of plastic debris in soils. However, the degradation performance of commercially available BDP products in real soils and the response of soil microbial communities to biodegradation remain unclear. Here, we explored the degradation characteristics of a commercial BDP product (made from starch, polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT)) in different soils in a microcosm system over a period of 360 days. Temporal dynamics of associated bacterial communities in different soil niches (control soil, plastic surface soil and bulk soil (soil without close contact with plastics)) were profiled. Weight loss reached 42.0±1.2% to 48.0±2.2% in different soils after 360 days. The degradation of BDP followed the same pattern in different soils characterized by two distinct stages. In the first stage (day 0-30), BDPs experienced major weight loss (35.8-41.9%) which coincided with a drastic increase in the soil dissolve organic carbon (1.53-2.25 times the control soil) and the forming of distinct bacterial communities in the plastic surface soil. Thermalgravimetric analysis (TGA) and fourier transform infrared (FTIR) analysis confirmed the fast depletion of starch in this stage. In addition, observations with naked eyes and scanning electron microscope confirmed intensive microbial colonization on BDP surfaces. In the second stage (day 30-360), the degradation of remaining PLA and PBAT continued at a relatively slow rate. Meanwhile bacterial communities in the plastic surface soil started to gradually recover from the disturbance caused by fast biodegradation in the first stage in a soil-dependent manner. Our findings indicate that the degradation performance of BDPs was limited by the degradation rate of relatively recalcitrant components and the temporal dynamics of associated soil bacterial communities synchronized with the degradation of BDPs.


Assuntos
Plásticos Biodegradáveis , Solo , Poliésteres , Plásticos , Agricultura , Bactérias , Amido
10.
J Hazard Mater ; 447: 130765, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36640504

RESUMO

The accumulation of microplastics poses potential risks to soil health. Here, we did a preliminary exploration on the potential of Lumbricus terrestris (Oligochaeta) to reduce low-density polyethylene (LDPE), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT) microplastic (20-648 µm) contamination in soils. The ingestion of microplastics-contaminated soil (1% of microplastics, dw/dw) in a mesocosm system and the ingestion of pure microplastics in the Petri Dish by earthworms were studied. Results show that earthworms survived in the microplastics-contaminated soil (0% mortality in 35 days) but barely when exposed solely to microplastics (30-80% mortality in 4 days). Size-dependent ingestion of microplastics was not observed. The fragmentation of LDPE microplastics in the gizzard facilitated by soil was confirmed by the significantly increased ratio of small-sized (20-113 µm) microplastics from the bulk soil to the gut (from 8.4% to 18.8%). PLA and PBAT microplastics were fragmented by gizzard without the facilitation of soil, the ratios of small-sized (20-113 µm) PLA and PBAT microplastics in the gut were 55.5% and 108.2% higher than in respective pristine distributions. Substantial depolymerization of PLA (weight-average molar mass reduced by 17.7% with shift in molecular weight distribution) and suspected depolymerization of PBAT were observed in the worm gut, while no change in the molar mass was observed for PLA and PBAT microplastics buried in the soil for 49 days. Our results suggest that ingested microplastics could undergo fragmentation and depolymerization (for certain polymers) in the earthworm gut. Further research is needed to reveal the mechanisms of polymer depolymerization in the earthworm gut and to evaluate the feasibility of microplastic bioremediation with earthworms.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos/toxicidade , Plásticos , Polietileno , Biodegradação Ambiental , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo , Poliésteres
11.
Environ Pollut ; 316(Pt 1): 120513, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374801

RESUMO

Although microplastic pollution jeopardizes both terrestrial and aquatic ecosystems, the movement of plastic particles through terrestrial environments is still poorly understood. Agricultural soils exposed to different managements are important sites of storage and dispersal of microplastics. This study aimed to identify the abundance, distribution, and type of microplastics present in agricultural soils, water, airborne dust, and ditch sediments. Soil health was also assessed using soil macroinvertebrate abundance and diversity. Sixteen fields were evaluated, 6 of which had been exposed to more than 5 years of compost application, 5 were exposed to at least 5 years of plastic mulch use, and 5 were not exposed to any specific management (controls) within the last 5 years. We also evaluated the spread of microplastics from the farms into nearby water bodies and airborne dust. We found 11 types of microplastics in soil, among which Light Density Polyethylene (LDPE) and Light Density Polyethylene covered with pro-oxidant additives (PAC) were the most abundant. The highest concentrations of plastics were found in soils exposed to plastic mulch management (128.7 ± 320 MPs.g-1 soil and 224.84 ± 488 MPs.g-1 soil, respectively) and the particles measured from 50 to 150 µm. Nine types of microplastics were found in water, with the highest concentrations observed in systems exposed to compost. Farms applying compost had higher LDPE and PAC concentrations in ditch sediments as compared to control and mulch systems; a significant correlation between soil polypropylene (PP) microplastics with ditch sediment microplastics (r2 0.7 p < 0.05) was found. LDPE, PAC, PE (Polyethylene), and PP were the most abundant microplastics in airborne dust. Soil invertebrates were scarce in the systems using plastic mulch. A cocktail of microplastics was found in all assessed matrices.


Assuntos
Poluentes do Solo , Poluentes Químicos da Água , Microplásticos , Solo , Plásticos , Polietileno/análise , Poeira , Ecossistema , Água , Poluentes do Solo/análise , Polipropilenos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 900: 165179, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385505

RESUMO

Intensive agriculture relies on external inputs to reach high productivity and profitability. Plastic mulch, mainly in the form of Low-Density Polyethylene (LDPE), is widely used in agriculture to decrease evaporation, increase soil temperature and prevent weeds. The incomplete removal of LDPE mulch after use causes plastic contamination in agricultural soils. In conventional agriculture, the use of pesticides also leaves residues accumulating in soils. Thus, the objective of this study was to measure plastic and pesticide residues in agricultural soils and their effects on the soil microbiome. For this, we sampled soil (0-10 cm and 10-30 cm) from 18 parcels from 6 vegetable farms in SE Spain. The farms were under either organic or conventional management, where plastic mulch had been used for >25 years. We measured the macro- and micro-light density plastic debris contents, the pesticide residue levels, and a range of physiochemical properties. We also carried out DNA sequencing on the soil fungal and bacterial communities. Plastic debris (>100 µm) was found in all samples with an average number of 2 × 103 particles kg-1 and area of 60 cm2 kg-1. We found 4-10 different pesticide residues in all conventional soils, for an average of 140 µg kg-1. Overall, pesticide content was ∼100 times lower in organic farms. The soil microbiomes were farm-specific and related to different soil physicochemical parameters and contaminants. Regarding contaminants, bacterial communities responded to the total pesticide residues, the fungicide Azoxystrobin and the insecticide Chlorantraniliprole as well as the plastic area. The fungicide Boscalid was the only contaminant to influence the fungal community. The wide spread of plastic and pesticide residues in agricultural soil and their effects on soil microbial communities may impact crop production and other environmental services. More studies are required to evaluate the total costs of intensive agriculture.


Assuntos
Fungicidas Industriais , Microbiota , Resíduos de Praguicidas , Praguicidas , Solo/química , Resíduos de Praguicidas/análise , Verduras , Polietileno , Agricultura , Praguicidas/análise
13.
FEMS Microbiol Ecol ; 98(2)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35150249

RESUMO

Plastic mulch film residues have been accumulating in agricultural soils for decades, but so far, little is known about its consequences on soil microbial communities and functions. Here, we tested the effects of plastic residues of low-density polyethylene and biodegradable mulch films on soil suppressiveness and microbial community composition. We investigated how plastic residues in a Fusarium culmorum suppressive soil affect the level of disease suppressiveness, plant biomass, nutrient status, and microbial communities in rhizosphere using a controlled pot experiment. The addition of 1% plastic residues to the suppressive soil did not affect the level of suppression and the disease symptoms index. However, we did find that plant biomasses decreased, and that plant nutrient status changed in the presence of plastic residues. No significant changes in bacterial and fungal rhizosphere communities were observed. Nonetheless, bacterial and fungal communities closely attached to the plastisphere were very different from the rhizosphere communities with overrepresentation of potential plant pathogens. The plastisphere revealed a high abundance of specific bacterial phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) and fungal genera (Rhizoctonia and Arthrobotrys). Our work revealed new insights and raises emerging questions for further studies on the impact of microplastics on the agroecosystems.


Assuntos
Ascomicetos , Microbiota , Agricultura , Plásticos , Rizosfera , Solo/química , Microbiologia do Solo
14.
Environ Int ; 165: 107293, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609499

RESUMO

Microplastic pollution and changes to soil hydraulic characteristics affect the physical properties and functions of soil; however, knowledge remains limited on how microplastics influence soil hydraulic properties. Nonetheless, it is important to understand these relationships to maintain soil health and ensure sustainable land use, especially in the current "plastic age." This case study explored how different particle sizes (20, 200, and 500 µm) and concentrations (up to 6%) of polypropylene microplastics affect the hydraulic properties of three soil textures (loam, clay, and sand). The results show that addition of microplastic reduced the saturated hydraulic conductivity (Ks) of the three soils by 69.79%, 77.11%, and 95.79%, respectively. These observed adverse effects of microplastics on the infiltration properties of the three studied soils were influenced by particle size, with larger particles having the weakest effect. Furthermore, microplastic addition reduced the water retention capacity of the clay to a greater extent than that of the loam and sand. In the case of clay, the slope of the water characteristic curve (SWRC) increased significantly, whereas the saturated water content (θs) and residual water content (θr) curves decreased significantly. Importantly, the interaction between microplastics and soil alters the soil pore-size distribution and reduces pore availability. Overall, this case study demonstrates the impact of microplastic on the hydraulic properties of different soil textures, which can inform management strategies to minimize the adverse effects of microplastic accumulation on yields where plastics are used in agricultural production.


Assuntos
Microplásticos , Solo , Argila , Plásticos , Areia , Água/análise
15.
Sci Total Environ ; 755(Pt 2): 142516, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045612

RESUMO

Although concerns surrounding microplastics (MPs) in terrestrial ecosystems have been growing in recent years, little is known about the responses of plant growth to MPs pollution. Here, we conducted a pot experiment in a net house under natural condition by adding two types of MPs, low-density polyethylene (LDPE-MPs) and polylactic acid (PLA) mixed with poly-butylene-adipate-co-terephthalate (PBAT, Bio-MPs), to sandy soil at 5 doses (0.5%, 1.0%, 1.5%, 2.0%, 2.5% ω/ω dry soil weight). The effects of LDPE-MPs and Bio-MPs on common bean (Phaseolus vulgaris L) were tested. Compared to control (no MPs addition), LDPE-MPs showed no significant effects on shoot, root and fruit biomass while ≥1.0% LDPE-MPs showed significant higher specific root nodules (n·g-1 dry root biomass) and only 2.5% LDPE-MPs showed significant higher specific root length (cm·g-1 dry root biomass). 1.0% LDPE-MPs caused significant higher leaf area and 0.5% LDPE-MPs caused significant lower leaf relative chlorophyll content. For Bio-MPs treatment, compared to control, ≥1.5% Bio-MPs showed significant lower shoot and root biomass. ≥2.0% Bio-MPs showed significant lower leaf area and fruit biomass. All Bio-MPs treatments showed significant higher specific root length and specific root nodules as compared to control. The results of the current research show that both MPs induced the responses of common bean growth, and ≥1.5% Bio-MPs exerted stronger effects. Further studies of their ecological impacts on soil-plant systems are urgently needed.


Assuntos
Phaseolus , Solo , Ecossistema , Microplásticos , Plásticos/toxicidade
16.
Sci Total Environ ; 755(Pt 1): 142653, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33069476

RESUMO

One of the main sources of plastic pollution in agricultural fields is the plastic mulch used by farmers to improve crop production. The plastic mulch is often not removed completely from the fields after harvest. Over time, the plastic mulch that is left of the fields is broken down into smaller particles which are dispersed by the wind or runoff. In the Region of Murcia in Spain, plastic mulch is heavily used for intensive vegetable farming. After harvest, sheep are released into the fields to graze on the vegetable residues. The objective of the study was to assess the plastic contamination in agricultural soil in Spain and the ingestion of plastic by sheep. Therefore, three research questions were established: i) What is the plastic content in agricultural soils where plastic mulch is commonly used? ii) Do livestock ingest the microplastics found in the soil? iii) How much plastic could be transported by the livestock? To answer these questions, we sampled top soils (0-10 cm) from 6 vegetable fields and collected sheep faeces from 5 different herds. The microplastic content was measured using density separation and visual identification. We found ~2 × 103 particles∙kg-1 in the soil and ~103 particles∙kg-1 in the faeces. The data show that plastic particles were present in the soil and that livestock ingested them. After ingesting plastic from one field, the sheep can become a source of microplastic contamination as they graze on other farms or grasslands. The potential transport of microplastics due to a herd of 1000 sheep was estimated to be ~106 particles∙ha-1∙y-1. Further studies should focus on: assessing how much of the plastic found in faeces comes directly from plastic mulching, estimating the plastic degradation in the guts of sheep and understanding the potential effects of these plastic residues on the health of livestock.


Assuntos
Plásticos , Solo , Agricultura , Animais , Fazendas , Fezes , Microplásticos , Ovinos , Espanha , Verduras
17.
J Hazard Mater ; 409: 124606, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33246819

RESUMO

The impact of microplastic pollution on terrestrial biota is an emerging research area, and this is particularly so for soil biota. In this study, we addressed this knowledge gap by examining the impact of aged low-density polyethylene (LDPE) and polyester fibres (i.e. polyethylene terephthalate, PET) on a forest microbiome composition and activity. We also measured the corresponding physicochemical changes in the soil. We observed that bacteria community composition diverged in PET and LDPE treated soils from that of the control by day 42. These changes occurred at 0.2% and 0.4% (w/w) of PET and at 3% LDPE. Additionally, soil respiration was 8-fold higher in soil that received 3% LDPE compared to other treatments and control. There were no clear patterns linking these biological changes to physicochemical changes measured. Taken together, we concluded that microplastics aging in the environment may have evolutionary consequences for forest soil microbiome and there is immediate implication for climate change if the observed increase in soil respiration is reproducible in multiple ecosystems.


Assuntos
Microbiota , Poluentes do Solo , Ecossistema , Florestas , Microplásticos , Plásticos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
18.
Environ Pollut ; 261: 114198, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32097788

RESUMO

Microplastic pollution is becoming a major challenge with the growing use of plastic. In recent years, research about microplastic pollution in the environment has become a field of study with increased interest, with ever expanding findings on sources, sinks and pathways of microplastics. Wastewater treatment plants effectively remove microplastics from wastewater and concentrate them in sewage sludge which is often used to fertilise agricultural fields. Despite this, quantification of microplastic pollution in agricultural fields through the application of sewage sludge is largely unknown. In light of this issue, four wastewater treatment plants and 16 agricultural fields (0-8 sewage sludge applications of 20-22 tons ha-1 per application), located in the east of Spain, were sampled. Microplastics were extracted using a floatation and filtration method, making a distinction between light density microplastics (ρ < 1 g cm-3) and heavy density microplastics (ρ > 1 g cm-3). Sewage sludge, on average, had a light density plastic load of 18,000 ± 15,940 microplastics kg-1 and a heavy density plastic load of 32,070 ± 19,080 microplastics kg-1. Soils without addition of sewage sludge had an average light density plastic load of 930 ± 740 microplastics kg-1 and a heavy density plastic load of 1100 ± 570 microplastics kg-1. Soils with addition of sewage sludge had an average light density plastic load of 2130 ± 950 microplastics kg-1 and a heavy density plastic load of 3060 ± 1680 microplastics kg-1. On average, soils' plastic loads increased by 280 light density microplastics kg-1 and 430 heavy density microplastics kg-1 with each successive application of sewage sludge, indicating that sewage sludge application results in accumulation of microplastics in agricultural soils.


Assuntos
Agricultura , Monitoramento Ambiental , Microplásticos , Esgotos , Solo , Agricultura/estatística & dados numéricos , Microplásticos/análise , Esgotos/química , Solo/química , Espanha
19.
J Hazard Mater ; 387: 121711, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31806445

RESUMO

Plastic residues could accumulate in soils as a consequence of using plastic mulching, which results in a serious environmental concern for agroecosystems. As an alternative, biodegradable plastic films stand as promising products to minimize plastic debris accumulation and reduce soil pollution. However, the effects of residues from traditional and biodegradable plastic films on the soil-plant system are not well studied. In this study, we used a controlled pot experiment to investigate the effects of macro- and micro- sized residues of low-density polyethylene and biodegradable plastic mulch films on the rhizosphere bacterial communities, rhizosphere volatile profiles and soil chemical properties. Interestingly, we identified significant effects of biodegradable plastic residues on the rhizosphere bacterial communities and on the blend of volatiles emitted in the rhizosphere. For example, in treatments with biodegradable plastics, bacteria genera like Bacillus and Variovorax were present in higher relative abundances and volatile compounds like dodecanal were exclusively produced in treatment with biodegradable microplastics. Furthermore, significant differences in soil pH, electrical conductivity and C:N ratio were observed across treatments. Our study provides evidence for both biotic and abiotic impacts of plastic residues on the soil-plant system, suggesting the urgent need for more research examining their environmental impacts on agroecosystems.


Assuntos
Plásticos Biodegradáveis/farmacologia , Microplásticos/farmacologia , Polietileno/farmacologia , Rizosfera , Poluentes do Solo/farmacologia , Triticum/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Biomassa , Solo/química , Compostos Orgânicos Voláteis/metabolismo
20.
Environ Pollut ; 266(Pt 3): 115097, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32629308

RESUMO

The plastic mulch films used in agriculture are considered to be a major source of the plastic residues found in soil. Mulching with low-density polyethylene (LDPE) is widely practiced and the resulting macro- and microscopic plastic residues in agricultural soil have aroused concerns for years. Over the past decades, a variety of biodegradable (Bio) plastics have been developed in the hope of reducing plastic contamination of the terrestrial ecosystem. However, the impact of these Bio plastics in agroecosystems have not been sufficiently studied. Therefore, we investigated the impact of macro (around 5 mm) and micro (<1 mm) sized plastic debris from LDPE and one type of starch-based Bio mulch film on soil physicochemical and hydrological properties. We used environmentally relevant concentrations of plastics, ranging from 0 to 2% (w/w), identified by field studies and literature review. We studied the effects of the plastic residue on a sandy soil for one month in a laboratory experiment. The bulk density, porosity, saturated hydraulic conductivity, field capacity and soil water repellency were altered significantly in the presence of the four kinds of plastic debris, while pH, electrical conductivity and aggregate stability were not substantially affected. Overall, our research provides clear experimental evidence that microplastics affect soil properties. The type, size and content of plastic debris as well as the interactions between these three factors played complex roles in the variations of the measured soil parameters. Living in a plastic era, it is crucial to conduct further interdisciplinary studies in order to have a comprehensive understanding of plastic debris in soil and agroecosystems.


Assuntos
Poluentes do Solo , Solo , Agricultura , Ecossistema , Hidrologia , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA