Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33257533

RESUMO

The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-ß) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Apresentação Cruzada/fisiologia , Células Dendríticas/metabolismo , Imunidade Inata/fisiologia , Lipopolissacarídeos/metabolismo , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Periodonto/microbiologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/imunologia
2.
Anaerobe ; 71: 102399, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34090994

RESUMO

Periodontal disease, an inflammatory bone disease of the oral cavity, affects more than 50% of the United States population over the age of 30. The Gram-negative, anaerobic bacterium Porphyromonas gingivalis, the etiological agent of periodontal disease, is known to induce dysbiosis of the oral microbiome while promoting inflammatory bone loss. We have recently reported that P. gingivalis can also alter the gut microbiota of mice prone to develop inflammatory atherosclerosis. However, it is still unknown whether P. gingivalis induces similar changes to the gut microbiome as it does to oral microbiome. In this study, we demonstrate that P. gingivalis infection increases the diversity of the oral microbiome, allowing for colonization of potentially opportunistic species in the oral microbiome and overgrowth of commensal species in both the oral and gut microbiomes. Since periodontal disease treatment in humans typically involves antibiotic treatment, we also examined the combined effect of P. gingivalis infection on mice pretreated with oral antibiotics. By correlating the oral and cecal microbiota of P. gingivalis-infected mice fed a normal chow diet, we identified blooms of the Gram-negative genera Barnesiella and Bacteroides and imbalances of mucin-degrading bacteria. These disrupted community structures were predicted to have increased detrimental functional capacities including increased flavonoid degradation and l-histidine fermentation. Though antibiotic pretreatment (without P. gingivlais) had a dominant impact on the cecal microbiome, P. gingivalis infection of mice with or without antibiotic pretreatment increased the abundance of the phylum Firmicutes and the Porphyromonadaceae family in the cecum. Collectively, our study demonstrates that P. gingivalis oral infection disrupted the oral and cecal microbiomes of otherwise unperturbed mice, altering their community membership and functional potential.


Assuntos
Microbioma Gastrointestinal , Boca/microbiologia , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Disbiose/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Filogenia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/isolamento & purificação
3.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570556

RESUMO

The Porphyromonas gingivalis strain ATCC 33277 (33277) and 381 genomes are nearly identical. However, strain 33277 displays a significantly diminished capacity to stimulate host cell Toll-like receptor 2 (TLR2)-dependent signaling and interleukin-1ß (IL-1ß) production relative to 381, suggesting that there are strain-specific differences in one or more bacterial immune-modulatory factors. Genomic sequencing identified a single nucleotide polymorphism in the 33277 fimB allele (A→T), creating a premature stop codon in the 33277 fimB open reading frame relative to the 381 fimB allele. Gene exchange experiments established that the 33277 fimB allele reduces the immune-stimulatory capacity of this strain. Transcriptome comparisons revealed that multiple genes related to carboxy-terminal domain (CTD) family proteins, including the gingipains, were upregulated in 33277 relative to 381. A gingipain substrate degradation assay demonstrated that cell surface gingipain activity is higher in 33277, and an isogenic mutant strain deficient for the gingipains exhibited an increased ability to induce TLR2 signaling and IL-1ß production. Furthermore, 33277 and 381 mutant strains lacking CTD cell surface proteins were more immune-stimulatory than the parental wild-type strains, consistent with an immune-suppressive role for the gingipains. Our data show that the combination of an intact fimB allele and limited cell surface gingipain activity in P. gingivalis 381 renders this strain more immune-stimulatory. Conversely, a defective fimB allele and high-level cell surface gingipain activity reduce the capacity of P. gingivalis 33277 to stimulate host cell innate immune responses. In summary, genomic and transcriptomic comparisons identified key virulence characteristics that confer divergent host cell innate immune responses to these highly related P. gingivalis strains.


Assuntos
Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Cisteína Endopeptidases Gingipaínas/metabolismo , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/imunologia , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interleucina-1beta/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/imunologia , Células THP-1 , Receptor 2 Toll-Like/metabolismo
4.
PLoS Pathog ; 10(2): e1004647, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25679217

RESUMO

Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.


Assuntos
Autofagia/imunologia , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Células Mieloides/metabolismo , Porphyromonas gingivalis/metabolismo , Receptores de Superfície Celular/metabolismo , Receptor 2 Toll-Like/metabolismo , Dendritos/ultraestrutura , Células Dendríticas/imunologia , Células Dendríticas/ultraestrutura , Fímbrias Bacterianas , Humanos , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Monócitos/imunologia , Monócitos/ultraestrutura , Células Mieloides/imunologia , Receptor 2 Toll-Like/imunologia
5.
PLoS Pathog ; 10(7): e1004215, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010102

RESUMO

Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS) structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4) agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE(-/-) mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE(-/-) mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune detection at TLR4 facilitating chronic inflammation in the vasculature. These studies support the emerging concept that pathogen-mediated chronic inflammatory disorders result from specific pathogen-mediated evasion strategies resulting in low-grade chronic inflammation.


Assuntos
Infecções por Bacteroidaceae/imunologia , Lipídeo A/imunologia , Porphyromonas gingivalis/imunologia , Vasculite/imunologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/microbiologia , Aterosclerose/patologia , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Osteoporose/genética , Osteoporose/imunologia , Osteoporose/microbiologia , Osteoporose/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Vasculite/genética , Vasculite/microbiologia , Vasculite/patologia
6.
Arterioscler Thromb Vasc Biol ; 34(3): 552-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24458711

RESUMO

OBJECTIVE: Interleukin 1 Receptor 1 (IL1R1) and its ligand, IL1ß, are upregulated in cardiovascular disease, obesity, and infection. Previously, we reported a higher level of IL1R1 transcripts in platelets from obese individuals of the Framingham Heart Study (FHS), but its functional effect in platelets has never been described. Additionally, IL1ß levels are increased in atherosclerotic plaques and in bacterial infections. The aim of this work is to determine whether IL1ß, through IL1R1, can activate platelets and megakaryocytes to promote atherothrombosis. APPROACH AND RESULTS: We found that IL1ß-related genes from platelets, as measured in 1819 FHS participants, were associated with increased body mass index, and a direct relationship was shown in wild-type mice fed a high-fat diet. Mechanistically, IL1ß activated nuclear factor-κB and mitogen-activated protein kinase signaling pathways in megakaryocytes. IL1ß, through IL1R1, increased ploidy of megakaryocytes to 64+ N by 2-fold over control. IL1ß increased agonist-induced platelet aggregation by 1.2-fold with thrombin and 4.2-fold with collagen. IL1ß increased adhesion to both collagen and fibrinogen, and heterotypic aggregation by 1.9-fold over resting. High fat diet-enhanced platelet adhesion was absent in IL1R1(-/-) mice. Wild-type mice infected with Porphyromonas gingivalis had circulating heterotypic aggregates (1.5-fold more than control at 24 hours and 6.2-fold more at 6 weeks) that were absent in infected IL1R1(-/-) and IL1ß(-/-) mice. CONCLUSIONS: In summary, IL1R1- and IL1ß-related transcripts are elevated in the setting of obesity. IL1R1/IL1ß augment both megakaryocyte and platelet functions, thereby promoting a prothrombotic environment during infection and obesity; potentially contributing to the development of atherothrombotic disease.


Assuntos
Inflamação/patologia , Interleucina-1beta/fisiologia , Megacariócitos/citologia , Obesidade/sangue , Ativação Plaquetária/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Transcrição Gênica/fisiologia , Animais , Aterosclerose/etiologia , Infecções por Bacteroidaceae/sangue , Infecções por Bacteroidaceae/patologia , Linhagem Celular , Colágeno/farmacologia , Gorduras na Dieta/toxicidade , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Inflamação/etiologia , Inflamação/genética , Interleucina-1beta/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Obesidade/complicações , Obesidade/genética , Fosforilação/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Porphyromonas gingivalis , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Trombina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Immunol ; 190(3): 1148-57, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23264656

RESUMO

Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator. In this study, we show that TNF-deficient (Tnf(-/-)) mice are resistant to alveolar bone loss following oral infection with P. gingivalis, and thus establish a central role for TNF in experimental periodontal disease. Using bone marrow-derived macrophages (BMDM) from wild-type and gene-specific knockout mice, we demonstrate that the initial inflammatory response to P. gingivalis in naive macrophages is MyD88 dependent and requires cooperative signaling of TLR2 and TLR4. The ability of P. gingivalis to activate cells via TLR2 or TLR4 was confirmed in TLR2- or TLR4-transformed human embryonic kidney cells. Additional studies using bacterial mutants demonstrated a role for fimbriae in the modulation of TLR-mediated activation of NF-κB. Whereas both TLR2 and TLR4 contributed to TNF production in naive macrophages, P. gingivalis preferentially exploited TLR2 in endotoxin-tolerant BMDM to trigger excessive TNF production. We found that TNF induced surface TLR2 expression and augmented TLR-induced cytokine production in P. gingivalis-stimulated BMDM, establishing a previously unidentified TNF-dependent feedback loop. Adoptive transfer of TLR2-expressing macrophages to TLR2-deficient mice restored the ability of P. gingivalis to induce alveolar bone loss in vivo. Collectively, our results identify a TLR2- and TNF-dependent macrophage-specific mechanism underlying pathogen-induced inflammatory bone loss in vivo.


Assuntos
Perda do Osso Alveolar/etiologia , Infecções por Bacteroidaceae/imunologia , Gengivite/fisiopatologia , Macrófagos/fisiologia , Porphyromonas gingivalis/patogenicidade , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Transferência Adotiva , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/fisiopatologia , Animais , Antibioticoprofilaxia , Infecções por Bacteroidaceae/microbiologia , Fímbrias Bacterianas/fisiologia , Regulação da Expressão Gênica/imunologia , Gengivite/complicações , Gengivite/imunologia , Células HEK293 , Humanos , Teste de Cultura Mista de Linfócitos , Ativação de Macrófagos , Macrófagos/transplante , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/fisiologia , NF-kappa B/metabolismo , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/ultraestrutura , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Fator de Necrose Tumoral alfa/deficiência
8.
BMC Genomics ; 15: 1176, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25540039

RESUMO

BACKGROUND: Atherosclerosis is a progressive disease characterized by inflammation and accumulation of lipids in vascular tissue. Porphyromonas gingivalis (Pg) and Chlamydia pneumoniae (Cp) are associated with inflammatory atherosclerosis in humans. Similar to endogenous mediators arising from excessive dietary lipids, these Gram-negative pathogens are pro-atherogenic in animal models, although the specific inflammatory/atherogenic pathways induced by these stimuli are not well defined. In this study, we identified gene expression profiles that characterize P. gingivalis, C. pneumoniae, and Western diet (WD) at acute and chronic time points in aortas of Apolipoprotein E (ApoE-/-) mice. RESULTS: At the chronic time point, we observed that P. gingivalis was associated with a high number of unique differentially expressed genes compared to C. pneumoniae or WD. For the top 500 differentially expressed genes unique to each group, we observed a high percentage (76%) that exhibited decreased expression in P. gingivalis-treated mice in contrast to a high percentage (96%) that exhibited increased expression in WD mice. C. pneumoniae treatment resulted in approximately equal numbers of genes that exhibited increased and decreased expression. Gene Set Enrichment Analysis (GSEA) revealed distinct stimuli-associated phenotypes, including decreased expression of mitochondrion, glucose metabolism, and PPAR pathways in response to P. gingivalis but increased expression of mitochondrion, lipid metabolism, carbohydrate and amino acid metabolism, and PPAR pathways in response to C. pneumoniae; WD was associated with increased expression of immune and inflammatory pathways. DAVID analysis of gene clusters identified by two-way ANOVA at acute and chronic time points revealed a set of core genes that exhibited altered expression during the natural progression of atherosclerosis in ApoE-/- mice; these changes were enhanced in P. gingivalis-treated mice but attenuated in C. pneumoniae-treated mice. Notable differences in the expression of genes associated with unstable plaques were also observed among the three pro-atherogenic stimuli. CONCLUSIONS: Despite the common outcome of P. gingivalis, C. pneumoniae, and WD on the induction of vascular inflammation and atherosclerosis, distinct gene signatures and pathways unique to each pro-atherogenic stimulus were identified. Our results suggest that pathogen exposure results in dysregulated cellular responses that may impact plaque progression and regression pathways.


Assuntos
Aorta/metabolismo , Apolipoproteínas E/deficiência , Chlamydophila pneumoniae/fisiologia , Dieta Ocidental/efeitos adversos , Perfilação da Expressão Gênica , Porphyromonas gingivalis/fisiologia , Animais , Aorta/patologia , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica/genética , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/microbiologia , Placa Aterosclerótica/patologia
9.
J Immunol ; 189(6): 3178-87, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22891282

RESUMO

The low-grade oral infection chronic periodontitis (CP) has been implicated in coronary artery disease risk, but the mechanisms are unclear. In this study, a pathophysiological role for blood dendritic cells (DCs) in systemic dissemination of oral mucosal pathogens to atherosclerotic plaques was investigated in humans. The frequency and microbiome of CD19(-)BDCA-1(+)DC-SIGN(+) blood myeloid DCs (mDCs) were analyzed in CP subjects with or without existing acute coronary syndrome and in healthy controls. FACS analysis revealed a significant increase in blood mDCs in the following order: healthy controls < CP < acute coronary syndrome/CP. Analysis of the blood mDC microbiome by 16S rDNA sequencing showed Porphyromonas gingivalis and other species, including (cultivable) Burkholderia cepacia. The mDC carriage rate with P. gingivalis correlated with oral carriage rate and with serologic exposure to P. gingivalis in CP subjects. Intervention (local debridement) to elicit a bacteremia increased the mDC carriage rate and frequency in vivo. In vitro studies established that P. gingivalis enhanced by 28% the differentiation of monocytes into immature mDCs; moreover, mDCs secreted high levels of matrix metalloproteinase-9 and upregulated C1q, heat shock protein 60, heat shock protein 70, CCR2, and CXCL16 transcripts in response to P. gingivalis in a fimbriae-dependent manner. Moreover, the survival of the anaerobe P. gingivalis under aerobic conditions was enhanced when within mDCs. Immunofluorescence analysis of oral mucosa and atherosclerotic plaques demonstrate infiltration with mDCs, colocalized with P. gingivalis. Our results suggest a role for blood mDCs in harboring and disseminating pathogens from oral mucosa to atherosclerosis plaques, which may provide key signals for mDC differentiation and atherogenic conversion.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Bacteroidaceae/sangue , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Infecções por Burkholderia/sangue , Infecções por Burkholderia/imunologia , Infecções por Burkholderia/microbiologia , Portador Sadio/sangue , Portador Sadio/imunologia , Portador Sadio/microbiologia , Doença Crônica , Células Dendríticas/patologia , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/microbiologia , Monócitos/patologia , Mucosa Bucal/imunologia , Mucosa Bucal/microbiologia , Mucosa Bucal/patologia , Células Mieloides/imunologia , Células Mieloides/microbiologia , Células Mieloides/patologia , Periodontite , Placa Aterosclerótica/sangue , Porphyromonas gingivalis
10.
J Immunol ; 189(7): 3681-8, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22956579

RESUMO

Clinical and epidemiological studies have implicated chronic infections in the development of atherosclerosis. It has been proposed that common mechanisms of signaling via TLRs link stimulation by multiple pathogens to atherosclerosis. However, how pathogen-specific stimulation of TLR4 contributes to atherosclerosis progression remains poorly understood. In this study, atherosclerosis-prone apolipoprotein-E null (ApoE(-/-)) and TLR4-deficient (ApoE(-/-)TLR4(-/-)) mice were orally infected with the periodontal pathogen Porphyromonas gingivalis. ApoE(-/-)TLR4(-/-) mice were markedly more susceptible to atherosclerosis after oral infection with P. gingivalis. Using live animal imaging, we demonstrate that enhanced lesion progression occurs progressively and was increasingly evident with advancing age. Immunohistochemical analysis of lesions from ApoE(-/-)TLR4(-/-) mice revealed an increased inflammatory cell infiltrate composed primarily of macrophages and IL-17 effector T cells (Th17), a subset linked with chronic inflammation. Furthermore, enhanced atherosclerosis in TLR4-deficient mice was associated with impaired development of Th1 immunity and regulatory T cell infiltration. In vitro studies suggest that the mechanism of TLR4-mediated protective immunity may be orchestrated by dendritic cell IL-12 and IL-10, which are prototypic Th1 and regulatory T cell polarizing cytokines. We demonstrate an atheroprotective role for TLR4 in response to infection with the oral pathogen P. gingivalis. Our results point to a role for pathogen-specific TLR signaling in chronic inflammation and atherosclerosis.


Assuntos
Aterosclerose/imunologia , Infecções por Bacteroidaceae/imunologia , Gengivite/imunologia , Mediadores da Inflamação/fisiologia , Porphyromonas gingivalis/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/fisiologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/patologia , Progressão da Doença , Gengivite/genética , Gengivite/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Porphyromonas gingivalis/patogenicidade , Transdução de Sinais/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
11.
J Cell Physiol ; 228(7): 1413-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23255141

RESUMO

Activation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation. In this review, we discuss two model pathogens, Mycobacterium tuberculosis and Porphyromonas gingivalis, which efficiently escape various aspects of the immune system within professional and non-professional immune cell types to establish chronic inflammation.


Assuntos
Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Infecções Bacterianas/metabolismo , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Doença Crônica , Humanos , Inflamação/metabolismo , Modelos Imunológicos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/patogenicidade , Transdução de Sinais/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
12.
Circ Res ; 104(3): 346-54, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19106411

RESUMO

Cells of the innate immune system use Toll-like receptors (TLRs) to initiate the proinflammatory response to microbial infection. Recent studies have shown acute infections are associated with a transient increase in the risk of vascular thrombotic events. Although platelets play a central role in acute thrombosis and accumulating evidence demonstrates their role in inflammation and innate immunity, investigations into the expression and functionality of platelet TLRs have been limited. In the present study, we demonstrate that human platelets express TLR2, TLR1, and TLR6. Incubation of isolated platelets with Pam(3)CSK4, a synthetic TLR2/TLR1 agonist, directly induced platelet aggregation and adhesion to collagen. These functional responses were inhibited in TLR2-deficient mice and, in human platelets, by pretreatment with TLR2-blocking antibody. Stimulation of platelet TLR2 also increased P-selectin surface expression, activation of integrin alpha(IIb)beta(3), generation of reactive oxygen species, and, in human whole blood, formation of platelet-neutrophil heterotypic aggregates. TLR2 stimulation also activated the phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway in platelets, and inhibition of PI3-K significantly reduced Pam(3)CSK4-induced platelet responses. In vivo challenge with live Porphyromonas gingivalis, a Gram-negative pathogenic bacterium that uses TLR2 for innate immune signaling, also induced significant formation of platelet-neutrophil aggregates in wild-type but not TLR2-deficient mice. Together, these data provide the first demonstration that human platelets express functional TLR2 capable of recognizing bacterial components and activating the platelet thrombotic and/or inflammatory pathways. This work substantiates the role of platelets in the immune and inflammatory response and suggests a mechanism by which bacteria could directly activate platelets.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Porphyromonas gingivalis , Receptor 2 Toll-Like/metabolismo , Animais , Infecções por Bacteroidaceae/imunologia , Plaquetas/imunologia , Humanos , Leucócitos/imunologia , Leucócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 Toll-Like/genética
13.
Front Oral Health ; 2: 784448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141703

RESUMO

Increasing evidence indicates that chronic inflammation due to periodontal disease is associated with progression of non-alcoholic fatty liver disease (NAFLD) caused by a Western diet. NAFLD has also been associated with oral infection with the etiological agent of periodontal disease, Porphyromonas gingivalis. P. gingivalis oral infection has been shown to induce cardiometabolic disease features including hepatic lipid accumulation while also leading to dysbiosis of the gut microbiome. However, the impact of P. gingivalis infection on the gut microbiota of mice with diet-induced NAFLD and the potential for those changes to mediate NAFLD progression has yet to be determined. In the current study, we have demonstrated that P. gingivalis infection induced sustained alterations of the gut microbiota composition and predicted functions, which was associated with the promotion of NAFLD in steatotic mice. Reduced abundance of short-chain fatty acid-producing microbiota was observed after both acute and chronic P. gingivalis infection. Collectively, our findings demonstrate that P. gingivalis infection produces a persistent change in the gut microbiota composition and predicted functions that promotes steatosis and metabolic disease.

14.
Front Biosci ; 13: 2041-59, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981690

RESUMO

Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. The expression of TLRs are markedly augmented in human atherosclerotic lesions and this occurs preferentially by endothelial cells and macrophages in areas infiltrated with inflammatory cells. Furthermore polymorphisms in the human gene encoding one TLR receptor (TLR4) which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with low levels of certain circulating mediators of inflammation and a decreased risk for atherosclerosis in humans. Recent advances have established a fundamental role for inflammation in mediating all stages of atherosclerosis. However, the triggers that initiate and sustain the inflammatory process have not been definitively identified. Although definitive proof of a role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen Porphyromonas gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. We have also established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate immune signaling in the context of local chronic inflammation versus distant chronic inflammation. We postulate that bacterial infection mediates inflammatory responses that involve specific innate immune pathways in defined host cells. Furthermore, these inflammatory responses can be correlated with atherosclerosis and ultimately thrombotic complications.


Assuntos
Aterosclerose/imunologia , Sistema Imunitário , Inflamação/microbiologia , Doenças Periodontais/imunologia , Animais , Aterosclerose/epidemiologia , Células Epiteliais/microbiologia , Epitélio/microbiologia , Humanos , Macrófagos/metabolismo , Camundongos , Mucosa Bucal/microbiologia , Doenças Periodontais/epidemiologia , Porphyromonas gingivalis/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like
15.
PLoS One ; 10(7): e0131688, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26148065

RESUMO

INTRODUCTION: Diverse and multi-factorial processes contribute to the progression of cardiovascular disease. These processes affect cells involved in the development of this disease in varying ways, ultimately leading to atherothrombosis. The goal of our study was to compare the differential effects of specific stimuli--two bacterial infections and a Western diet--on platelet responses in ApoE-/- mice, specifically examining inflammatory function and gene expression. Results from murine studies were verified using platelets from participants of the Framingham Heart Study (FHS; n = 1819 participants). METHODS: Blood and spleen samples were collected at weeks 1 and 9 from ApoE-/- mice infected with Porphyromonas gingivalis or Chlamydia pneumoniae and from mice fed a Western diet for 9 weeks. Transcripts based on data from a Western diet in ApoE-/- mice were measured in platelet samples from FHS using high throughput qRT-PCR. RESULTS: At week 1, both bacterial infections increased circulating platelet-neutrophil aggregates. At week 9, these cells individually localized to the spleen, while Western diet resulted in increased platelet-neutrophil aggregates in the spleen only. Microarray analysis of platelet RNA from infected or Western diet-fed mice at week 1 and 9 showed differential profiles. Genes, such as Serpina1a, Ttr, Fgg, Rpl21, and Alb, were uniquely affected by infection and diet. Results were reinforced in platelets obtained from participants of the FHS. CONCLUSION: Using both human studies and animal models, results demonstrate that variable sources of inflammatory stimuli have the ability to influence the platelet phenotype in distinct ways, indicative of the diverse function of platelets in thrombosis, hemostasis, and immunity.


Assuntos
Plaquetas/patologia , Dieta Ocidental/efeitos adversos , Inflamação/patologia , Agregação Plaquetária/fisiologia , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Plaquetas/metabolismo , Plaquetas/microbiologia , Chlamydophila pneumoniae/patogenicidade , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Masculino , Camundongos , Neutrófilos/microbiologia , Neutrófilos/patologia , Neutrófilos/fisiologia , Porphyromonas gingivalis/patogenicidade , Trombose/metabolismo , Trombose/patologia
16.
J Vis Exp ; (90): e51556, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25146644

RESUMO

Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Modelos Animais de Doenças , Inflamação/microbiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Animais , Masculino , Camundongos , Camundongos Transgênicos , Boca/microbiologia , Porphyromonas gingivalis/genética
17.
J Leukoc Biol ; 94(2): 281-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23729500

RESUMO

Maintenance of blood DC homeostasis is essential to preventing autoimmunity while controlling chronic infection. However, the ability of bacteremic pathogens to directly regulate blood DC homeostasis has not been defined. One such bacteremic pathogen, Porphyromonas gingivalis, is shown by our group to survive within mDCs under aerobic conditions and therein, metastasize from its oral mucosal niche. This is accompanied by expansion of the blood mDC pool in vivo, independently of canonical DC poietins. We presently know little of how this bacteremic pathogen causes blood DC expansion and the pathophysiological significance. This work shows that optimum differentiation of MoDCs from primary human monocytes, with or without GM-CSF/IL-4, is dependent on infection with P. gingivalis strains expressing the DC-SIGN ligand mfa-1. DC differentiation is lost when DC-SIGN is blocked with its ligand HIV gp120 or knocked out by siRNA gene silencing. Thus, we have identified a novel, noncanonical pathway of DC differentiation. We term these PDDCs and show that PDDCs are bona fide DCs, based on phenotype and phagocytic activity when immature and the ability to up-regulate accessory molecules and stimulate allo-CD4(+) T cell proliferation when matured. The latter is dependent on the P. gingivalis strain used to initially "educate" PDDCs. Moreover, we show that P. gingivalis-infected, conventional MoDCs become resistant to apoptosis and inflammatory pyroptosis, as determined by levels of Annexin V and caspase-8, -3/7, and -1. Taken together, we provide new insights into how a relatively asymptomatic bacteremia may influence immune homeostasis and promote chronic inflammation.


Assuntos
Bacteriemia/imunologia , Proteínas de Bactérias/imunologia , Moléculas de Adesão Celular/imunologia , Células Dendríticas/patologia , Proteínas de Fímbrias/imunologia , Lectinas Tipo C/imunologia , Porphyromonas gingivalis/fisiologia , Receptores de Superfície Celular/imunologia , Aerobiose , Anexina A5/imunologia , Apoptose , Linfócitos T CD4-Positivos/imunologia , Caspases/fisiologia , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas/imunologia , Células Cultivadas/patologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Proteínas de Fímbrias/deficiência , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/imunologia , Proteína gp120 do Envelope de HIV/farmacologia , Homeostase , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Monócitos/citologia , Mucosa Bucal/imunologia , Mucosa Bucal/microbiologia , Fagocitose , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/imunologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética
18.
Atherosclerosis ; 215(1): 52-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21251656

RESUMO

OBJECTIVE: Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. METHODS AND RESULTS: Apolipoprotein E-deficient (ApoE-/-) mice were orally infected with P. gingivalis, and magnetic resonance imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. CONCLUSIONS: These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization.


Assuntos
Aterosclerose/imunologia , Infecções por Bacteroidaceae/imunologia , Tronco Braquiocefálico/patologia , Inflamação/etiologia , Inflamação/prevenção & controle , Porphyromonas gingivalis/imunologia , Animais , Apolipoproteínas E/deficiência , Aterosclerose/patologia , Infecções por Bacteroidaceae/patologia , Tronco Braquiocefálico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Metabolismo dos Lipídeos , Macrófagos/imunologia , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Placa Aterosclerótica/etiologia , Linfócitos T/imunologia
19.
J Innate Immun ; 2(4): 334-43, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20505314

RESUMO

Studies in humans have established that polymorphisms in genes encoding the innate immune Toll-like receptors (TLRs) are associated with inflammatory atherosclerosis. In hyperlipidemic mice, TLR2 and TLR4 have been reported to contribute to atherosclerosis progression. Human and mouse studies support a role for the oral pathogen Porphyromonas gingivalis in atherosclerosis, although the mechanisms by which this pathogen stimulates inflammatory atherosclerosis via innate immune system activation is not known. Using a genetically defined apolipoprotein E-deficient (ApoE(-/-)) mouse model we demonstrate that pathogen-mediated inflammatory atherosclerosis occurs via both TLR2-dependent and TLR2-independent mechanisms. P. gingivalis infection in mice possessing functional TLR2 induced the accumulation of macrophages as well as inflammatory mediators including CD40, IFN-gamma and the pro-inflammatory cytokines IL-1 beta, IL-6 and tumor necrosis factor-alpha in atherosclerotic lesions. The expression of these inflammatory mediators was reduced in atherosclerotic lesions from P. gingivalis-infected TLR2-deficient (TLR2(-/-)) mice. These studies provide a mechanistic link between an innate immune receptor and pathogen-accelerated atherosclerosis by a clinically and biologically relevant bacterial pathogen.


Assuntos
Aterosclerose , Citocinas/metabolismo , Inflamação/imunologia , Porphyromonas gingivalis/patogenicidade , Receptor 2 Toll-Like/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Apolipoproteínas E/metabolismo , Aterosclerose/imunologia , Aterosclerose/microbiologia , Aterosclerose/fisiopatologia , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Modelos Animais de Doenças , Humanos , Inflamação/microbiologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Porphyromonas gingivalis/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
20.
J Immunol ; 180(4): 2187-95, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18250425

RESUMO

The major and minor fimbriae proteins produced by the human pathogen Porphyromonas gingivalis are required for invasion of human aortic endothelial cells and for the stimulation of potent inflammatory responses. In this study, we report that native forms of both the major and minor fimbriae proteins bind to and signal through TLR2 for this response. Major and minor fimbriae bound to a human TLR2:Fc chimeric protein with an observed K(d) of 28.9 nM and 61.7 nM, respectively. Direct binding of the major and minor fimbriae to a human chimeric CD14-Fc protein also established specific binding of the major and minor fimbriae to CD14 with classic saturation kinetics. Using a P. gingivalis major and minor fimbriae mutant, we confirmed that TLR2 binding in whole cells is dependent on the expression of the major and minor fimbriae. Although we did not observe binding with the major or minor fimbriae to the TLR4-Fc chimeric protein, signaling through TLR4 for both proteins was demonstrated in human embryonic kidney 293 cells transfected with TLR4 and only in the presence MD-2. Transient transfection of dominant-negative forms of TLR2 or TLR4 reduced IL-8 production by human aortic endothelial cells following stimulation with major or minor fimbriae. The ability of two well-defined microbe-associated molecular patterns to select for innate immune recognition receptors based on accessory proteins may provide a novel way for a pathogen to sense and signal in appropriate host environments.


Assuntos
Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Fímbrias Bacterianas/imunologia , Mediadores da Inflamação/metabolismo , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia , Animais , Anticorpos Bloqueadores/fisiologia , Linhagem Celular , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/fisiologia , Fímbrias Bacterianas/metabolismo , Humanos , Interleucina-8/antagonistas & inibidores , Interleucina-8/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Porphyromonas gingivalis/química , Porphyromonas gingivalis/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA