Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 250: 118442, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368919

RESUMO

Heavy metal pollution, particularly the excessive release of copper (Cu), is an urgent environmental concern. In this study, sodium lignosulfonate/carboxymethyl sa-son seed gum (SL-Cg-g-PAA) designed for remediation of Cu-contaminated water and soil was successfully synthesized through a free radical polymerization method using lignin as a raw material. This hydrogel exhibits remarkable Cu adsorption capability when applied to water, with a maximum adsorption capacity reaching 172.41 mg/g. Important adsorption mechanisms include surface complexation and electrostatic attraction between Cu(Ⅱ) and oxygen-containing functional groups (-OH, -COOH), as well as cation exchange involving -COONa and -SO3Na. Furthermore, SL/Cg-g-PAA effectively mitigated the bioavailability of heavy metals within soil matrices, as evidenced by a notable 14.1% reduction in DTPA extracted state Cu (DTPA-Cu) content in the S4 treatment (0.7% SL/Cg-g-PAA) compared to the control group. Concurrently, the Cu content in both the leaves and roots of pakchoi exhibited substantial decreases of 55.19% and 36.49%, respectively. These effects can be attributed to the precipitation and complexation reactions facilitated by the hydrogel. In summary, this composite hydrogel is highly promising for effective remediation of heavy metal pollution in water and soil, with a particular capability for the immobilization of Cu(Ⅱ) and reduction of its adverse effects on ecosystems.


Assuntos
Cobre , Recuperação e Remediação Ambiental , Hidrogéis , Lignina , Poluentes do Solo , Poluentes Químicos da Água , Hidrogéis/química , Cobre/química , Lignina/química , Lignina/análogos & derivados , Poluentes do Solo/química , Adsorção , Poluentes Químicos da Água/química , Recuperação e Remediação Ambiental/métodos
2.
Int J Biol Macromol ; 278(Pt 2): 134765, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153671

RESUMO

Industrial lignin is a waste product of the paper industry, which contains a large amount of oxygen group structure, and can be used to treat industrial wastewater containing Cr(VI). However, lignin has very low reactivity, so how to enhance its adsorption performance is a major challenge at present. In this study, a two-stage hydrothermal and activation strategy was used to activate the lignin activity and doping S element to prepare high-performance S-doped lignin-based polyporous carbon (S-LPC). The results show that the surface of S-LPC is rich in S and O groups and has a well-developed pore structure, which is very beneficial to Cr(VI) uptake -reduction and mass transfer on the material. In the wastewater, the utmost adsorption potential of Cr(VI) by S-LPC achieved 882.83 mg/g. After 7 cycles of regeneration, the adsorption of S-LPC decreased by only approximately 18 %. Ion competition experiments showed that S-LPC has excellent specificity for Cr(VI) adsorption. In factory wastewater, the adsorption performance of S-LPC for Cr(VI) remained above 95 %, which shows the excellent performance of S-LPC in practical applications. The results are of great significance for green chemical utilization of waste lignin, treatment of industrial wastewater and sustainable development.


Assuntos
Carbono , Cromo , Resíduos Industriais , Lignina , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Lignina/química , Cromo/química , Cromo/isolamento & purificação , Adsorção , Águas Residuárias/química , Porosidade , Carbono/química , Purificação da Água/métodos , Poluentes Químicos da Água/química
3.
Int J Biol Macromol ; 252: 126432, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604414

RESUMO

Cr(VI) is a carcinogenic heavy metal that forms an oxygen-containing anion, which is difficult to remove from water by adsorbents. Here, industrial alkali lignin was transformed into a Cr(VI) adsorbent (N-LC) by using a two-step hydrothermal strategy. The characterization results of the adsorbent showed that O and N were uniformly distributed on the surface of the adsorbent, resulting in a favorable morphology and structure. The Cr(VI) adsorption of N-LC was 13.50 times that of alkali lignin, and the maximum was 326.10 mg g-1, which confirmed the superiority of the two-step hydrothermal strategy. After 7 cycles, the adsorption of N-LC stabilized at approximately 62.18 %. In addition, in the presence of coexisting ions, N-LC showed a selective adsorption efficiency of 85.47 % for Cr(VI), which is sufficient to support its application to actual wastewaters. Model calculations and characterization showed that N and O groups were the main active factors in N-LC, and CO, -OH and pyridinic-N were the main active sites. This study provides a simple and efficient method for the treatment of heavy metals and the utilization of waste lignin, which is expected to be widely applied in the environmental, energy and chemical industries.


Assuntos
Carbono , Poluentes Químicos da Água , Lignina/química , Adsorção , Poluentes Químicos da Água/química , Água
4.
Int J Biol Macromol ; 244: 125413, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37327921

RESUMO

The application of most slow-release fertilizers is limited by complex preparation processes and short slow-release periods. In this study, carbon spheres (CSs) were prepared by a hydrothermal method using cellulose as the raw material. Using CSs as the fertilizer carrier, three new carbon-based slow-release nitrogen fertilizers were prepared using direct mixing (SRF-M), water-soluble immersion adsorption (SRFS), and co-pyrolysis (SRFP) methods, respectively. Examination of the CSs revealed regular and ordered surface morphology, enrichment of functional groups on the surfaces, and good thermal stability. Elemental analysis showed that SRF-M was rich in nitrogen (total nitrogen content of 19.66 %). Soil-leaching tests showed that the total cumulative nitrogen release of SRF-M and SRF-S was 55.78 % and 62.98 %, respectively, which greatly slowed down the release of nitrogen. Pot experiment results revealed that SRF-M significantly promoted the growth of pakchoi and improved crop quality. Thus, SRF-M was more effective in practical applications than the other two slow-release fertilizers. Mechanistic studies showed that CN, -COOR, pyridine-N and pyrrolic-N participated in nitrogen release. This study thus provides a simple, effective, and economical method for the preparation of slow-release fertilizers, providing new directions for further research and the develop of new slow-release fertilizers.


Assuntos
Celulose , Fertilizantes , Fertilizantes/análise , Nitrogênio/análise , Solo , Carbono
5.
Int J Biol Macromol ; 239: 124220, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001780

RESUMO

Reactive blue 19 is one of the abundant carcinogens commonly used in industrial applications. This study transformed industrial lignin into a lignin-based polyporous carbon@polypyrrole (LPC@PPy) by a hydrothermal-activation-in situ polymerization strategy for removal of reactive blue 19. The hydrothermal reaction and polypyrrole polymerization provide abundant O and N groups, and the pore-making process promotes the even distribution of O and N groups in the 3D pore of LPC@PPy, which is favorable for the adsorption of reactive blue 19. The adsorption capacity of LPC@PPy for reactive blue 19 is 537.52 mg g-1, which is 2.04 times the performance of LPC (only hydrothermal and activation process, only have O groups) and 3.36 times that of LC (direct lignin activation, lack of O and N groups). After 8 cycles, LPC@PPy still maintained a high adsorption capacity of 92.14 % for reactive blue 19. In addition, this study found that N and O groups in the material played an important role in adsorption, mainly pyridinic-N, C-OH, -COOR, -C-O- and CC. This work provides a new strategy for the removal of reactive blue 19 and determines the groups that mainly interact with reactive blue 19, which provides a new reference for adsorption, catalysis and related fields.


Assuntos
Carbono , Poluentes Químicos da Água , Polímeros , Pirróis , Lignina , Adsorção
6.
Int J Biol Macromol ; 207: 254-262, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263647

RESUMO

Due to its wide application and high toxicity, Remazol Brilliant Blue R (RBBR) has become a fatal contaminate in aquatic environment. In this study, to remove RBBR, a cellulose-based activated carbon (CAC) was synthesized at 800 °C with a cellulose-based hydrocarbon (CHC) activated by NaOH. The CHC was synthesized by the hydrothermal method with microcrystalline cellulose and urea as raw materials. The CAC possessed great amounts of N and O-containing functional groups and had well-developed pore structure. The BET specific surface area of CAC reached up to 1872.30 m2/g. The maximum adsorption capacity of CAC on RBBR was 653.19 mg/g during which chemical adsorption was the dominant mechanism. Adsorption thermodynamics indicated that the adsorption of RBBR by CAC was exothermic and spontaneous. Regeneration adsorption and ion competition experiments showed that the material could be used repeatedly and had good anti-interference ability. In addition, the removal rates of RBBR by CAC in actual water bodies, including river water and artificial lake water, were above 99.40%. Therefore, the novel CAC shows great potential for the remediation of printing and dyeing wastewater.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Antraquinonas , Celulose , Cinética , Águas Residuárias , Água
7.
Int J Biol Macromol ; 204: 310-320, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149091

RESUMO

A novel lignin-based hierarchical porous carbon (L-HPC) was prepared to remove Cr(VI) from water by using industrial alkali lignin through simple hydrothermal-induced assembly and alkali activation strategy. The adsorbent were characterized by SEM-EDS mapping, TEM, BET, XPS, FTIR, Raman spectroscopy and zeta potential. The characterization results indicated that L-HPC contained three-dimensional connected channels and many adsorbing N, O and other adsorption groups, which is very beneficial for Cr(VI) adsorption. The kinetics showed that the L-HPC adsorption of Cr(VI) was chemical adsorption and mainly controlled by intraparticle diffusion. The isotherm and thermodynamics indicated that L-HPC adsorption of Cr(VI) conforms to the Freundlich model, L-HPC is a kind of multimolecular layer adsorbent, and the adsorption capacity of Cr(VI) by L-HPC was 887.8 mg/g, which was significantly higher than values for other adsorbents. Ion competition simulation and actual water body tests showed that L-HPC exhibits high selectivity for Cr(VI) adsorption, adsorption cycle experiments show that L-HPC maintains over 83% performance after 12 cycles. Cost analysis shows that L-HPC is suitable for mass production. Therefore, L-HPC is a Cr(VI) adsorbent with high efficiency, high selectivity, and high reusability, which is broadly applicable and shows favorable prospects.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carbono , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Lignina , Porosidade , Águas Residuárias/química , Poluentes Químicos da Água/química
8.
Int J Biol Macromol ; 127: 544-554, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30660565

RESUMO

To develop a novel lignin-based highly efficient nitrogen fertilizer, the amination of the biorefinery technical lignin was conducted by Mannich reaction synergy with phenolation pretreatment. Subsequently, the structural transformations of lignin samples and the reaction mechanism were investigated in detail. The soil column leaching experiment was also performed to research the nitrogen release behavior of aminated lignin in soil. The results indicated that the amounts of active sites in lignin were significantly increased to 8.26 mmol/g from the original 2.91 mmol/g by phenolation. In addition, the Mannich reaction was highly selective for occurring at ortho- and para-positions of phenolic hydroxyl groups in the phenolated lignin, in which the latter was favored. Moreover, the nitrogen content in the aminated lignin was highly depended on the types of amination reagent instead of the proportion of reactants in this study. Under an optimal condition, aminated lignin with a high nitrogen content (10.13%) and low C/N ratio (6.08) could be obtained. Besides, it was especially noteworthy that the prepared APL in this study has a favorable nitrogen release behavior in soil. Thus, it is believed that these aminated lignin derivatives could be used for the preparation of various lignin-based highly efficient nitrogen fertilizer.


Assuntos
Fertilizantes , Lignina/química , Nitrogênio/química , Aminação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA