Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 46(12): 2610-2620, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31385011

RESUMO

PURPOSE: To improve the test-retest reproducibility of coronary plaque 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) uptake measurements. METHODS: We recruited 20 patients with coronary artery disease who underwent repeated hybrid PET/CT angiography (CTA) imaging within 3 weeks. All patients had 30-min PET acquisition and CTA during a single imaging session. Five PET image-sets with progressive motion correction were reconstructed: (i) a static dataset (no-MC), (ii) end-diastolic PET (standard), (iii) cardiac motion corrected (MC), (iv) combined cardiac and gross patient motion corrected (2 × MC) and, (v) cardiorespiratory and gross patient motion corrected (3 × MC). In addition to motion correction, all datasets were corrected for variations in the background activities which are introduced by variations in the injection-to-scan delays (background blood pool clearance correction, BC). Test-retest reproducibility of PET target-to-background ratio (TBR) was assessed by Bland-Altman analysis and coefficient of reproducibility. RESULTS: A total of 47 unique coronary lesions were identified on CTA. Motion correction in combination with BC improved the PET TBR test-retest reproducibility for all lesions (coefficient of reproducibility: standard = 0.437, no-MC = 0.345 (27% improvement), standard + BC = 0.365 (20% improvement), no-MC + BC = 0.341 (27% improvement), MC + BC = 0.288 (52% improvement), 2 × MC + BC = 0.278 (57% improvement) and 3 × C + BC = 0.254 (72% improvement), all p < 0.001). Importantly, in a sub-analysis of 18F-NaF-avid lesions with gross patient motion > 10 mm following corrections, reproducibility was improved by 133% (coefficient of reproducibility: standard = 0.745, 3 × MC = 0.320). CONCLUSION: Joint corrections for cardiac, respiratory, and gross patient motion in combination with background blood pool corrections markedly improve test-retest reproducibility of coronary 18F-NaF PET.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Radioisótopos de Flúor , Imagem do Acúmulo Cardíaco de Comporta , Movimento , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluoreto de Sódio , Idoso , Angiografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Reprodutibilidade dos Testes
2.
J Nucl Med ; 60(6): 830-836, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30442755

RESUMO

Patient motion degrades image quality, affecting the quantitative assessment of PET images. This problem affects studies of coronary lesions in which microcalcification processes are targeted. Coronary PET imaging protocols require scans of up to 30 min, introducing the risk of gross patient motion (GPM) during the acquisition. Here, we investigate the feasibility of an automated data-driven method for the detection of GPM during PET acquisition. Methods: Twenty-eight patients with stable coronary disease underwent a 30-min PET acquisition 1 h after the injection of 18F-sodium fluoride (18F-NaF) at 248 ± 10 MBq (mean ± SD) and then a coronary CT angiography scan. An automated data-driven GPM detection technique tracking the center of mass of the count rates for every 200 ms in the PET list-mode data was devised and evaluated. Two patient motion patterns were considered: sudden repositioning (motion of >0.5 mm within 3 s) and general repositioning (motion of >0.3 mm over 15 s or more). After the reconstruction of diastolic images, individual GPM frames with focal coronary uptake were coregistered in 3 dimensions, creating a GPM-compensated (GPMC) image series. Lesion motion was reported for all lesions with focal uptake. Relative differences in SUVmax and target-to-background ratio (TBR) between GPMC and non-GPMC (standard electrocardiogram-gated data) diastolic PET images were compared in 3 separate groups defined by the maximum motion observed in the lesion (<5, 5-10, and >10 mm). Results: A total of 35 18F-NaF-avid lesions were identified in 28 patients. An average of 3.5 ± 1.5 GPM frames were considered for each patient, resulting in an average frame duration of 7 ± 4 (range, 3-21) min. The mean per-patient motion was: 7 ± 3 mm (maximum, 13.7 mm). GPM correction increased SUVmax and TBR in all lesions with greater than 5 mm of motion. In lesions with 5-10 mm of motion (n = 15), SUVmax and TBR increased by 4.6% ± 5.6% (P = 0.02) and 5.8% ± 6.4% (P < 0.002), respectively. In lesions with greater than 10 mm of motion (n = 15), the SUVmax and TBR increased by 5.0% ± 5.3% (P = 0.009) and 11.5% ± 10.1% (P = 0.001), respectively. GPM correction led to the diagnostic reclassification of 3 patients (11%). Conclusion: GPM during coronary 18F-NaF PET imaging is common and may affect quantitative accuracy. Automated retrospective compensation of this motion is feasible and should be considered for coronary PET imaging.


Assuntos
Radioisótopos de Flúor , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Movimento , Tomografia por Emissão de Pósitrons , Fluoreto de Sódio , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos Retrospectivos , Razão Sinal-Ruído , Tórax/diagnóstico por imagem , Fatores de Tempo
3.
J Nucl Med ; 60(4): 530-535, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30213848

RESUMO

Coronary 18F-sodium fluoride (18F-NaF) PET identifies ruptured plaques in patients with recent myocardial infarction and localizes to atherosclerotic lesions with active calcification. Most studies to date have performed the PET acquisition 1 h after injection. Although qualitative and semiquantitative analysis is feasible with 1-h images, residual blood-pool activity often makes it difficult to discriminate plaques with 18F-NaF uptake from noise. We aimed to assess whether delayed PET performed 3 h after injection improves image quality and uptake measurements. Methods: Twenty patients (67 ± 7 y old, 55% male) with stable coronary artery disease underwent coronary CT angiography (CTA) and PET/CT both 1 h and 3 h after the injection of 266.2 ± 13.3 MBq of 18F-NaF. We compared the visual pattern of coronary uptake, maximal background (blood pool) activity, noise, SUVmax, corrected SUVmax (cSUVmax), and target-to-background (TBR) ratio in lesions defined by CTA on 1-h versus 3-h 18F-NaF PET. Results: On 1-h PET, 26 CTA lesions with 18F-NaF PET uptake were identified in 12 (60%) patients. On 3-h PET, we detected 18F-NaF PET uptake in 7 lesions that were not identified on 1-h PET. The median cSUVmax and TBRs of these lesions were 0.48 (interquartile range [IQR], 0.44-0.51) and 1.45 (IQR, 1.39-1.52), respectively, compared with -0.01 (IQR, -0.03-0.001) and 0.95 (IQR, 0.90-0.98), respectively, on 1-h PET (both P < 0.001). Across the entire cohort, 3-h PET SUVmax was similar to 1-h PET measurements (1.63 [IQR, 1.37-1.98] vs. 1.55 [IQR, 1.43-1.89], P = 0.30), and the background activity was lower (0.71 [IQR, 0.65-0.81] vs. 1.24 [IQR, 1.05-1.31], P < 0.001). On 3-h PET, TBR, cSUVmax, and noise were significantly higher (respectively: 2.30 [IQR, 1.70-2.68] vs. 1.28 [IQR, 0.98-1.56], P < 0.001; 0.38 [IQR, 0.27-0.70] vs. 0.90 [IQR, 0.64-1.17], P < 0.001; and 0.10 [IQR, 0.09-0.12] vs. 0.07 [IQR, 0.06-0.09], P = 0.02). Median cSUVmax and TBR increased by 92% (range, 33%-225%) and 80% (range, 20%-177%), respectively. Conclusion: Blood-pool activity decreases on delayed imaging, facilitating the assessment of 18F-NaF uptake in coronary plaques. Median TBR increases by 80%, leading to the detection of more plaques with significant uptake than are detected using the standard 1-h protocol. A greater than 1-h delay may improve the detection of 18F-NaF uptake in coronary artery plaques.


Assuntos
Vasos Coronários/diagnóstico por imagem , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluoreto de Sódio , Idoso , Transporte Biológico , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Fluoreto de Sódio/metabolismo , Fatores de Tempo
4.
J Nucl Med ; 57(1): 54-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26471691

RESUMO

UNLABELLED: Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has recently been shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using (18)F-NaF PET. We aimed to determine whether a motion correction technique applied to gated (18)F-NaF PET images could enhance image quality and improve uptake estimates. METHODS: Seventeen patients with myocardial infarction (n = 7) or stable angina (n = 10) underwent (18)F-NaF PET and prospective coronary CT angiography. PET data were reconstructed in 4 different ways: the first was 1 gated bin (end-diastolic phase with 25% of the counts), the second was 4 gated bins (consecutive 25% segments), the third was 10 gated bins (consecutive 10% segments), and the fourth was ungated. Subsequently, with data from either 4 or 10 bins, gated PET images were registered using a local, nonlinear motion correction method guided by the extracted coronary arteries from CT angiography. Global noise levels and target-to-background ratios (TBR) defined on manually delineated coronary plaque lesions were compared to assess image quality and uptake estimates. RESULTS: Compared with the reference standard of using only 1 bin of PET data, motion correction using 10 bins of PET data reduced image noise by 46% (P < 0.0001). TBR in positive lesions for 10-bin motion-corrected data was 11% higher than for 1-bin data (1.98 [interquartile range, 1.70-2.37] vs. 1.78 [1.58-2.16], P = 0.0027) and 33% higher than for ungated data (1.98 [1.70-2.37] vs. 1.49 [1.39-1.88], P < 0.0001). CONCLUSION: Motion correction of gated (18)F-NaF PET/coronary CT angiography is feasible, reduces image noise, and increases TBR. This improvement may allow more reliable identification of vulnerable coronary artery plaques using (18)F-NaF PET.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Radioisótopos de Flúor , Processamento de Imagem Assistida por Computador/métodos , Movimento , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Fluoreto de Sódio , Idoso , Angiografia Coronária , Doença da Artéria Coronariana/fisiopatologia , Feminino , Humanos , Masculino , Placa Aterosclerótica/fisiopatologia , Estudos Prospectivos , Estudos Retrospectivos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA