Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834936

RESUMO

The surface topography of titanium dental implants has a great influence on osseointegration. In this work, we try to determine the osteoblastic behavior and gene expression of cells with different titanium surfaces and relate them to the physicochemical properties of the surface. For this purpose, we have used commercial titanium discs of grade 3: as-received corresponds to machined titanium without any surface treatment (MA), chemically acid etched (AE), treated via sand blasting with Al2O3 particles (SB) and a sand-blasting treatment with acid etching (SB+AE). The surfaces have been observed using scanning electron microscopy (SEM) and the roughness, wettability and surface energy with dispersive and polar components have been characterized. Osteoblastic cultures were performed with SaOS-2 osteoblastic cells determining cell viability as well as alkaline phosphatase levels for 3 and 21 days, and osteoblastic gene expression was determined. The roughness values of the MA discs was 0.02 µm, which increases to 0.3 µm with acid attack and becomes the maximum for the sand-blasted samples, reaching values of 1.2 µm for SB and SB+AE. The hydrophilic behavior of the MA and AE samples with contact angles of 63° and 65° is superior to that of the rougher samples, being 75° for SB and 82° for SB+AE. In all cases, they show good hydrophilicity. GB and GB+AE surfaces present a higher polar component in the surface energy values, 11.96 and 13.18 mJ/m2, respectively, than AE and MA, 6.64 and 9.79 mJ/m2, respectively. The osteoblastic cell viability values at three days do not show statistically significant differences between the four surfaces. However, the viability of the SB and SB+AE surfaces at 21 days is much higher than that of the AE and MA samples. From the alkaline phosphatase studies, higher values were observed for those treated with sand blasting with and without acid etching compared to the other two surfaces, indicating a greater activity in osteoblastic differentiation. In all cases except in the Osterix (Ostx) -osteoblast-specific transcription factor-a decrease in gene expression is observed in relation to the MA samples (control). The most important increase was observed for the SB+AE condition. A decrease in the gene expression of Osteoprotegerine (OPG), Runt-related transcription factor 2 (Runx2), Receptor Activator of NF-κB Ligand (RANKL) and Alkaline Phosphatase (Alp) genes was observed in the AE surface.


Assuntos
Expressão Gênica , Osteoblastos , Titânio , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Proliferação de Células , Microscopia Eletrônica de Varredura , Osteoblastos/metabolismo , Propriedades de Superfície , Titânio/química , Osso e Ossos/metabolismo
2.
Materials (Basel) ; 15(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683200

RESUMO

In this work, the fatigue and cellular performance of novel superficially treated porous titanium dental implants made up using conventional powder metallurgy and space-holder techniques (30 vol.% and 50 vol.%, both with a spacer size range of 100-200 µm) are evaluated. Before the sintering stage, a specific stage of CNC milling of the screw thread of the implant is used. After the consolidation processing, different surface modifications are performed: chemical etching and bioactive coatings (BG 45S5 and BG 1393). The results are discussed in terms of the effect of the porosity, as well as the surface roughness, chemical composition, and adherence of the coatings on the fatigue resistance and the osteoblast cells' behavior for the proposed implants. Macro-pores are preferential sites of the nucleation of cracks and bone cell adhesion, and they increase the cellular activity of the implants, but decrease the fatigue life. In conclusion, SH 30 vol.% dental implant chemical etching presents the best bio-functional (in vitro osseointegration) and bio-mechanical (stiffness, yield strength and fatigue life) balance, which could ensure the required characteristics of cortical bone tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA