Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 76: 97-109, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731627

RESUMO

Ethylene glycol (EG) is a promising next generation feedstock for bioprocesses. It is a key component of the ubiquitous plastic polyethylene terephthalate (PET) and other polyester fibers and plastics, used in antifreeze formulations, and can also be generated by electrochemical conversion of syngas, which makes EG a key compound in a circular bioeconomy. The majority of biotechnologically relevant bacteria assimilate EG via the glycerate pathway, a wasteful metabolic route that releases CO2 and requires reducing equivalents as well as ATP. In contrast, the recently characterized ß-hydroxyaspartate cycle (BHAC) provides a more efficient, carbon-conserving route for C2 assimilation. Here we aimed at overcoming the natural limitations of EG metabolism in the industrially relevant strain Pseudomonas putida KT2440 by replacing the native glycerate pathway with the BHAC. We first prototyped the core reaction sequence of the BHAC in Escherichia coli before establishing the complete four-enzyme BHAC in Pseudomonas putida. Directed evolution on EG resulted in an improved strain that exhibits 35% faster growth and 20% increased biomass yield compared to a recently reported P. putida strain that was evolved to grow on EG via the glycerate pathway. Genome sequencing and proteomics highlight plastic adaptations of the genetic and metabolic networks in response to the introduction of the BHAC into P. putida and identify key mutations for its further integration during evolution. Taken together, our study shows that the BHAC can be utilized as 'plug-and-play' module for the metabolic engineering of two important microbial platform organisms, paving the way for multiple applications for a more efficient and carbon-conserving upcycling of EG in the future.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Plásticos/metabolismo , Etilenoglicol/metabolismo , Polietilenotereftalatos/metabolismo , Carbono/metabolismo
2.
Mol Pharm ; 13(7): 2290-300, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27241028

RESUMO

Cardiovascular diseases are the leading causes of death in industrialized countries. Atherosclerotic coronary arteries are commonly treated with percutaneous transluminal coronary intervention followed by stent deployment. This treatment has significantly improved the clinical outcome. However, triggered vascular smooth muscle cell (SMC) proliferation leads to in-stent restenosis in bare metal stents. In addition, stent thrombosis is a severe side effect of drug eluting stents due to inhibition of endothelialization. The aim of this study was to develop and test a stent surface polymer, where cytotoxic drugs are covalently conjugated to the surface and released by proteases selectively secreted by proliferating smooth muscle cells. Resting and proliferating human coronary artery smooth muscle cells (HCASMC) and endothelial cells (HCAEC) were screened to identify an enzyme exclusively released by proliferating HCASMC. Expression analyses and enzyme activity assays verified selective and exclusive activity of the matrix metalloproteinase-9 (MMP-9) in proliferating HCASMC. The principle of drug release exclusively triggered by proliferating HCASMC was tested using the biodegradable stent surface polymer poly-l-lactic acid (PLLA) and the MMP-9 cleavable peptide linkers named SRL and AVR. The specific peptide cleavage by MMP-9 was verified by attachment of the model compound fluorescein. Fluorescein release was observed in the presence of MMP-9 secreting HCASMC but not of proliferating HCAEC. Our findings suggest that cytotoxic drug conjugated polymers can be designed to selectively release the attached compound triggered by MMP-9 secreting smooth muscle cells. This novel concept may be beneficial for stent endothelialization thereby reducing the risk of restenosis and thrombosis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Stents Farmacológicos/efeitos adversos , Metaloproteinase 9 da Matriz/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Stents/efeitos adversos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Reestenose Coronária/induzido quimicamente , Reestenose Coronária/metabolismo , Vasos Coronários/metabolismo , Liberação Controlada de Fármacos/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Poliésteres/química , Polímeros/química , Trombose/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA