Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Small ; 19(13): e2206474, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599623

RESUMO

Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.


Assuntos
Células Artificiais , Células Artificiais/química , Comunicação Celular , DNA de Cadeia Simples , Proteínas de Membrana , Comunicação
2.
Chemistry ; 29(61): e202302058, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37497813

RESUMO

The achievement of light-responsive behaviours is an important target for protocell engineering to allow control of fundamental protocellular processes such as communication via diffusible chemical signals, shape changes or even motility at the flick of a switch. As a step towards this ambitious goal, here we describe the synthesis of a novel poly(ethylene glycol)-based crosslinker, reactive towards nucleophiles, that effectively degrades with UV light (405 nm). We demonstrate its utility for the fabrication of the first protocell membranes capable of light-induced disassembly, for the photo-generation of patterns of protocells, and for the modulation of protocell membrane permeability. Overall, our results not only open up new avenues towards the engineering of spatially organised, communicating networks of protocells, and of micro-compartmentalised systems for information storage and release, but also have important implications for other research fields such as drug delivery and soft materials chemistry.


Assuntos
Células Artificiais , Células Artificiais/metabolismo , Polietilenoglicóis
3.
Macromol Rapid Commun ; 42(12): e2100102, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33749064

RESUMO

The design and synthesis of a novel acid-degradable polyethylene glycol-based N-hydroxysuccinimide (NHS) ester-activated crosslinker is reported. The crosslinker is reactive towards nucleophiles and features a central ketal functional group that is stable at pH > 7.5 and rapidly hydrolyses at pH > 6.0. The crosslinker is used to (i) fabricate acid-degradable polysaccharide hydrogels that exhibit controlled degradation upon exposure to an acidic environment or via endogenous enzyme activity; and (ii) construct hydrogel-filled protein-polymer microcompartments (termed proteinosomes) capable of pH-dependent membrane disassembly. Taken together the results provide new opportunities for the fabrication of pH-responsive soft materials with potential applications in drug delivery, tissue engineering, and soft-matter bioengineering.


Assuntos
Hidrogéis , Polietilenoglicóis , Concentração de Íons de Hidrogênio , Polímeros , Engenharia Tecidual
4.
Biochem Soc Trans ; 48(6): 2579-2589, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33155642

RESUMO

Prototissues comprise free-standing 3D networks of interconnected protocell consortia that communicate and display synergistic functions. Significantly, they can be constructed from functional molecules and materials, providing unprecedented opportunities to design tissue-like architectures that can do more than simply mimic living tissues. They could function under extreme conditions and exhibit a wide range of mechanical properties and bio-inspired metabolic functions. In this perspective, I will start by describing recent advancements in the design and synthetic construction of prototissues. I will then discuss the next challenges and the future impact of this emerging research field, which is destined to find applications in the most diverse areas of science and technology, from biomedical science to environmental science, and soft robotics.


Assuntos
Química/métodos , Polímeros/química , Animais , Células Artificiais/química , Biomimética , Biopolímeros/química , Núcleo Celular/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Humanos , Extração Líquido-Líquido , Teste de Materiais , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Biologia Sintética , Viroses/metabolismo
5.
Nat Mater ; 17(12): 1145-1153, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30297813

RESUMO

Although several new types of synthetic cell-like entities are now available, their structural integration into spatially interlinked prototissues that communicate and display coordinated functions remains a considerable challenge. Here we describe the programmed assembly of synthetic prototissue constructs based on the bio-orthogonal adhesion of a spatially confined binary community of protein-polymer protocells, termed proteinosomes. The thermoresponsive properties of the interlinked proteinosomes are used collectively to generate prototissue spheroids capable of reversible contractions that can be enzymatically modulated and exploited for mechanochemical transduction. Overall, our methodology opens up a route to the fabrication of artificial tissue-like materials capable of collective behaviours, and addresses important emerging challenges in bottom-up synthetic biology and bioinspired engineering.


Assuntos
Células Artificiais , Temperatura , Resinas Acrílicas/química , Animais , Bovinos , Mecanotransdução Celular , Ácidos Polimetacrílicos/química , Soroalbumina Bovina/química , Biologia Sintética
6.
Lab Chip ; 21(23): 4574-4585, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723291

RESUMO

The precise assembly of protocell building blocks into prototissues that are stable in water, capable of sensing the external environment and which display collective behaviours remains a considerable challenge in prototissue engineering. We have designed a microfluidic platform that enables us to build bespoke prototissues from predetermined compositions of two types of protein-polymer protocells. We can accurately control their size, composition and create unique Janus configurations in a way that is not possible with traditional methods. Because we can control the number and type of the protocells that compose the prototissue, we can hence modulate the collective behaviours of this biomaterial. We show control over both the amplitude of thermally induced contractions in the biomaterial and its collective endogenous biochemical reactivity. Our results show that microfluidic technologies enable a new route to the precise and high-throughput fabrication of tissue-like materials with programmable collective properties that can be tuned through careful assembly of protocell building blocks of different types. We anticipate that our bespoke prototissues will be a starting point for the development of more sophisticated artificial tissues for use in medicine, soft robotics, and environmentally beneficial bioreactor technologies.


Assuntos
Células Artificiais , Microfluídica , Materiais Biocompatíveis , Polímeros
7.
Adv Mater ; 33(24): e2100340, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33960013

RESUMO

Despite important breakthroughs in bottom-up synthetic biology, a major challenge still remains the construction of free-standing, macroscopic, and robust materials from protocell building blocks that are stable in water and capable of emergent behaviors. Herein, a new floating mold technique for the fabrication of millimeter- to centimeter-sized protocellular materials (PCMs) of any shape that overcomes most of the current challenges in prototissue engineering is reported. Significantly, this technique also allows for the generation of 2D periodic arrays of PCMs that display an emergent non-equilibrium spatiotemporal sensing behavior. These arrays are capable of collectively translating the information provided by the external environment and are encoded in the form of propagating reaction-diffusion fronts into a readable dynamic signal output. Overall, the methodology opens up a route to the fabrication of macroscopic and robust tissue-like materials with emergent behaviors, providing a new paradigm of bottom-up synthetic biology and biomimetic materials science.


Assuntos
Biologia Sintética , Células Artificiais , Materiais Biomiméticos
8.
Nat Commun ; 11(1): 41, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900396

RESUMO

The development of programmable microscale materials with cell-like functions, dynamics and collective behaviour is an important milestone in systems chemistry, soft matter bioengineering and synthetic protobiology. Here, polymer/nucleotide coacervate micro-droplets are reconfigured into membrane-bounded polyoxometalate coacervate vesicles (PCVs) in the presence of a bio-inspired Ru-based polyoxometalate catalyst to produce synzyme protocells (Ru4PCVs) with catalase-like activity. We exploit the synthetic protocells for the implementation of multi-compartmentalized cell-like models capable of collective synzyme-mediated buoyancy, parallel catalytic processing in individual horseradish peroxidase-containing Ru4PCVs, and chemical signalling in distributed or encapsulated multi-catalytic protocell communities. Our results highlight a new type of catalytic micro-compartment with multi-functional activity and provide a step towards the development of protocell reaction networks.


Assuntos
Células Artificiais/química , Catalase/química , Rutênio/química , Compostos de Tungstênio/química , Catalase/síntese química , Catálise , Peroxidase do Rábano Silvestre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA