Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 25633-25649, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37198933

RESUMO

A nanofiltration membrane functionalized with metal-organic frameworks (MOFs) is promising to enhance micropollutant removal and realize wastewater reclamation. However, the current MOF-based nanofiltration membranes still suffer from severe fouling problems with an indefinable mechanism when used for antibiotic wastewater treatment. Hence, we report a nature-inspired MOF-based thin-film nanocomposite (TFN-CU) membrane to explore its rejection and antifouling behavior. Compared with unmodified membranes, the optimal TFN-CU5 membrane (with 5 mg·mL-1 C-UiO-66-NH2) had high water permeance (17.66 ± 1.19 L·m-2·h-1·bar-1), exceptional rejection for norfloxacin (97.92 ± 2.28%) and ofloxacin (95.36 ± 1.03%), and excellent long-term stability for treating synthetic secondary effluent with antibiotic rejection over 90%. Furthermore, it also showed superior antifouling capability (flux recovery up to 95.86 ± 1.28%) in bovine serum albumin (BSA) filtration after fouling cycles. Deriving from the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach, the antifouling mechanism between BSA and the TFN-CU5 membrane was mainly attributed to the inhibited adhesion forces because the growing short-ranged acid-base interaction caused repulsive interfacial interactions. It is further revealed that BSA fouling behavior is slightly retarded under an alkaline environment, while strengthened in the presence of calcium ions and humic acid, as well as high ionic strength. In short, the nature-inspired MOF-based TFN membranes possess exceptional rejection and organic fouling resistance, giving insights into the design of antifouling membranes during antibiotic wastewater reclamation.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Águas Residuárias , Fluoroquinolonas , Antibacterianos/farmacologia , Membranas Artificiais
2.
ACS Appl Mater Interfaces ; 14(34): 38990-39003, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35976131

RESUMO

Thin-film nanocomposite (TFN) membranes with efficient molecular separation and organic solvent resistance are active in demand in wastewater treatment and resource reclamation, meeting the goal of emission peaks and carbon neutrality. In this work, a simple and rational design strategy has been employed to construct a sandwich-structured membrane for removing fluoroquinolone antibiotics and recycling organic solvents. The sandwich-structured membrane is composed of a porous substrate, a hydrophilic tannic acid-polyethyleneimine (TA-PEI) interlayer, and a polyamide (PA) selective layer decorated with metal-organic framework (PA-MOF). Results manifest that the hydrophilic TA-PEI interlayer played a bridging and gutter effect to achieve effective control in amide storage, amine diffusion, and nanomaterial downward leakage at the immiscible interface. The PA-MOF selective layer has been changed to a loosely crumpled surface, endowing functionalities on the sandwich-structured membrane that included limited pores, strengthened electronegativity, and stronger hydrophilicity. Thus, an enhanced water flux of 87.23 ± 7.43 LMH was achieved by the TFN-2 membrane (0.04 mg·mL-1 UiO-66-NH2), which is more than five times that of the thin-film composite membrane (17.46 ± 3.88 LMH). The rejection against norfloxacin, ciprofloxacin, and levofloxacin is 92.94 ± 1.60%, 94.62 ± 1.29%, and 96.92 ± 1.05%, respectively, effectively breaking through the "trade-off" effect between membrane permeability and rejection efficiency. Further antifouling results showed that the sandwich-structured membrane had lower flux decay ratios (3.36∼7.07%) and higher flux recovery ratios (93.40∼98.40%), as well as superior long-term stability after 30 days of filtration. Moreover, organic solvent resistance testing confirms that the sandwich-structured membrane maintained stable solvent flux and better recovery rates in ethanol, acetone, isopropanol, and N,N-dimethylformamide. Detailed nanofiltration mechanism studies revealed that these outstanding performances are based on the joint effect of the TA-PEI interlayer and PA-MOF selective layer, proposing a new perspective to break through the bottleneck of nanofiltration application in a complex environment.


Assuntos
Antibacterianos , Membranas Artificiais , Filtração/métodos , Estruturas Metalorgânicas , Nylons/química , Ácidos Ftálicos , Solventes
3.
Chemosphere ; 237: 124517, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549644

RESUMO

The dye wastewater treatment by membrane separation technology has obtained extensive attention in recent years. Nevertheless, it was rare for research on the removal of differently charged mixed dyes. In this study, several UiO-66-NH2 composite membranes were prepared and optimization experiments were conducted. The performance of composite membranes were evaluated by the removal of cationic (Methylene blue, MB), neutral (Rhodamine B, RB), and anionic (Congo red, CR) dyes. The optimization results demonstrated that the UiO-66-NH2/graphene oxide (UNG) composite membrane (PUF/PDA/UNG) which was loaded on polyurethane foam modified with polydopamine (PUF/PDA) had the best properties. In filtration experiments, the solution pH exhibited greater effect on the removal efficiency of MB and CR than RB. When NaCl, KCl, CaCl2 and Na2SO4 coexisted in the dye solution, the removal efficiency of MB by PUF/PDA/UNG membrane were 96.62%, 98.17%, 86.39% and 99.34% respectively. The presence of humic acid showed slight inhibitory effect on the removal of MB by PUF/PDA/UNG membrane (71.93%). The experimental results for mixed dyes filtration showed that PUF/PDA/UNG membrane could effectively remove MB, RB and CR in binary (i.e., MB/RB and RB/CR) and ternary (i.e., MB/RB/CR) systems through secondary filtration. And PUF/PDA/UNG membrane could remove MB and CR simultaneously through one-time filtration in MB/CR binary system. The removal mechanism was mainly attributed to the aggregation of mixed dyes, electrostatic interaction between dye molecules and the membrane surface, and hydrogen bonding. All results suggested that the as-prepared PUF/PDA/UNG membrane have great potential in practical treatment of dye wastewater.


Assuntos
Corantes/química , Grafite/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Adsorção , Filtração , Indóis , Membranas , Azul de Metileno , Polímeros , Poliuretanos , Rodaminas , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA