Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 170: 116062, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150878

RESUMO

Canine mammary tumors (CMT) can severely compromise the life quality of the affected dogs through local recurrence, distant metastases and ultimately succumb to death. Recently, more attention has been given to the potential antimetastatic effect of maduramicin (MAD) on breast cancer. However, its poor aqueous solubility and toxicity to normal tissues limit its clinical application. Therefore, to address the drawbacks of MAD and enhance its anticancer and antimetastatic effects, MAD-loaded TPGS polymeric micelles (MAD-TPGS) were prepared by a thin-film hydration technique. The optimized MAD-TPGS exhibited excellent size distribution, stability and improved water solubility. Cellular uptake assays showed that TPGS polymer micelles could enhance drug internalization. Moreover, TPGS synergistically improved the cytotoxicity of MAD by targeting mitochondrial organelles, improving reactive oxygen species levels and reducing the mitochondrial transmembrane potential. More importantly, MAD-TPGS significantly impeded the metastasis of tumor cells. In vivo results further confirmed that, in addition to exhibiting excellent biocompatibility, MAD-TPGS exhibited greater antitumor efficacy than free MAD. Interestingly, MAD-TPGS displayed superior suppression of CMT metastasis via tail vein injection compared to oral administration, indicating its suitability for intravenous delivery. Overall, MAD-TPGS could be applied as a potential antimetastatic cancer agent for CMT.


Assuntos
Antineoplásicos , Neoplasias Mamárias Animais , Cães , Animais , Micelas , Polietilenoglicóis , Antineoplásicos/farmacologia , Polímeros , Neoplasias Mamárias Animais/tratamento farmacológico , Vitamina E , Portadores de Fármacos , Linhagem Celular Tumoral
2.
Int J Nanomedicine ; 17: 2475-2491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668999

RESUMO

Background: Halofuginone (HF)-loaded TPGS polymeric micelles (HTPM) were successfully fabricated using the thin-film hydration technique. HTPM via intravenous injection have been demonstrated to exert an excellent anticancer effect against triple-negative breast cancer (TNBC) cells and subcutaneous xenografts. In the present study, we further explored the potential treatment effect and mechanism of orally administered HTPM alone and in combination with surgical therapy on TNBC in subcutaneous and orthotopic mouse models. Methods: Herein, the stability and in vitro release behavior of HTPM were first evaluated in the simulated gastrointestinal fluids. Caco-2 cell monolayers were then used to investigate the absorption and transport patterns of HF with/without encapsulation in TPGS polymeric micelles. Subsequently, the therapeutic effect of orally administered HTPM was checked on subcutaneous xenografts of TNBC in nude mice. Ultimately, orally administered HTPM, combined with surgical therapy, were utilized to treat orthotopic TNBC in nude mice. Results: Our data confirmed that HTPM exhibited good stability and sustained release in the simulated gastrointestinal fluids. HF was authenticated to be a substrate of P-glycoprotein (P-gp), and its permeability across Caco-2 cell monolayers was markedly enhanced via heightening intracellular absorption and inhibiting P-gp efflux due to encapsulation in TPGS polymeric micelles. Compared with HF alone, HTPM showed stronger tumor-suppressing effects in subcutaneous xenografts of MDA-MB-231 cells when orally administered. Moreover, compared with HTPM or surgical therapy alone, peroral HTPM combined with partial surgical excision synergistically retarded the growth of orthotopic TNBC. Fundamentally, HTPM orally administered at the therapeutic dose did not cause any pathological injury, while HF alone led to weight loss and jejunal bleeding in the investigated mice. Conclusion: Taken together, HTPM could be applied as a potential anticancer agent for TNBC by oral administration.


Assuntos
Micelas , Neoplasias de Mama Triplo Negativas , Animais , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Piperidinas , Polímeros , Quinazolinonas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vitamina E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA