Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(9): e2105465, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918449

RESUMO

Nanozyme-based chemodynamic therapy (CDT) for fighting bacterial infections faces several major obstacles including low hydrogen peroxide (H2 O2 ) level, over-expressed glutathione (GSH) in infected sites, and inevitable damage to healthy tissue with abundant nonlocalized nanozymes. Herein, a smart ultrasmall Fe3 O4 -decorated polydopamine (PDA/Fe3 O4 ) hybrid nanozyme is demonstrated that continuously converts oxygen into highly toxic hydroxyl radical (•OH) via GSH-depleted cascade redox reactions for CDT-mediated bacterial elimination and intensive wound disinfection. In this system, photonic hyperthermia of PDA/Fe3 O4 nanozymes can not only directly damage bacteria, but also improve the horseradish peroxidase-like activity of Fe3 O4 decorated for CDT. Surprisingly, through photothermal-enhanced cascade catalytic reactions, PDA/Fe3 O4 nanozymes can consume endogenous GSH for disrupting cellular redox homeostasis and simultaneously provide abundant H2 O2 for improving •OH generation, ultimately enhancing the antibacterial performance of CDT. Such PDA/Fe3 O4 can bind with bacterial cells, and reveals excellent antibacterial property against both Staphylococcus aureus and Escherichia coli. Most interestingly, PDA/Fe3 O4 nanozymes can be strongly retained in infected sites by an external magnet for localized long-term in vivo CDT and show minimal toxicity to healthy tissues and organs. This work presents an effective strategy to magnetically retain the therapeutic nanozymes in infected sites for highly efficient CDT with good biosafety.


Assuntos
Radical Hidroxila , Oxigênio , Desinfecção , Glutationa , Peróxido de Hidrogênio , Indóis , Oxirredução , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA