Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 217: 944-955, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908675

RESUMO

Developing advanced dressings that integrate multiple functions is one of the major challenges in current clinical wound treatment. In this study, Xanthan gum (XG) and polyacrylamide (PAAm) materials were used to prepare hydrogel dressings by one-pot method. With the combination of the PAAm network and the XG network, the PAAm-XG hydrogels showed the tensile strength of 0.36 MPa and the stretchability as large as 2078 %. The prepared PAAm-XG hydrogels had excellent water uptake efficiency with the swelling ratio of 1200 %. Besides, the developed dressings possessed outstanding biocompatibility, universal adhesion and self-healing ability. More importantly, the PAAm-XG hydrogels can be successfully loaded with Cefixime and human recombinant epidermal growth factor, and these loaded hydrogels released these bioactive molecules in sustained ways. As a result, both E. coli and S. aureus bacteria were inactivated after contacting with the Cefixime-loaded hydrogels for 24 h. Furthermore, in vivo data demonstrated that the PAAm-XG hydrogel dressings significantly accelerated the wound healing in a mouse model. All of these indicate that the multifunctional PAAm-XG hydrogels are promising candidates for wound treatment.


Assuntos
Hidrogéis , Staphylococcus aureus , Resinas Acrílicas , Animais , Bandagens , Cefixima , Escherichia coli , Humanos , Camundongos , Polissacarídeos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA