Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(10): 5364-9, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27070459

RESUMO

Microscopic plastic debris (microplastics, <5 mm in diameter) is ubiquitous in the marine environment. Previous work has shown that microplastics may be ingested and inhaled by the shore crab Carcinus maenas, although the biological consequences are unknown. Here, we show that acute aqueous exposure to polystyrene microspheres (8 µm) with different surface coatings had significant but transient effects on branchial function. Microspheres inhaled into the gill chamber had a small but significant dose-dependent effect on oxygen consumption after 1 h of exposure, returning to normal levels after 16 h. Ion exchange was also affected, with a small but significant decrease in hemolymph sodium ions and an increase in calcium ions after 24 h post-exposure. To further asses the effects on osmoregulation, we challenged crabs with reduced salinity after microplastic exposure. Neither microspheres nor natural sediments altered the crab's response to osmotic stress regardless of plastic concentration added. Carboxylated (COOH) and aminated (NH2) polystyrene microspheres were distributed differently across the gill surface, although neither had a significant adverse impact on gill function. These results illustrate the extent of the physiological effects of microplastics compared to the physiological resilience of shore crabs in maintaining osmoregulatory and respiratory function after acute exposure to both anthropogenic plastics and natural particles.


Assuntos
Braquiúros/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Animais , Hemolinfa , Plásticos/farmacologia , Salinidade
2.
Environ Sci Technol ; 48(15): 8823-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24972075

RESUMO

Microplastics, plastics particles <5 mm in length, are a widespread pollutant of the marine environment. Oral ingestion of microplastics has been reported for a wide range of marine biota, but uptake into the body by other routes has received less attention. Here, we test the hypothesis that the shore crab (Carcinus maenas) can take up microplastics through inspiration across the gills as well as ingestion of pre-exposed food (common mussel Mytilus edulis). We used fluorescently labeled polystyrene microspheres (8-10 µm) to show that ingested microspheres were retained within the body tissues of the crabs for up to 14 days following ingestion and up to 21 days following inspiration across the gill, with uptake significantly higher into the posterior versus anterior gills. Multiphoton imaging suggested that most microspheres were retained in the foregut after dietary exposure due to adherence to the hairlike setae and were found on the external surface of gills following aqueous exposure. Results were used to construct a simple conceptual model of particle flow for the gills and the gut. These results identify ventilation as a route of uptake of microplastics into a common marine nonfilter feeding species.


Assuntos
Braquiúros/metabolismo , Mytilus edulis/metabolismo , Plásticos/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Braquiúros/química , Comportamento Alimentar , Cadeia Alimentar , Brânquias/metabolismo , Microscopia de Fluorescência , Microesferas , Modelos Biológicos , Mytilus edulis/química , Plásticos/química , Plásticos/toxicidade , Poliestirenos/química , Poliestirenos/farmacocinética , Poliestirenos/toxicidade , Análise Espectral Raman , Distribuição Tecidual , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA