Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12410, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127732

RESUMO

In situ generation of antibacterial and antiviral agents by harnessing the catalytic activity of enzymes on surfaces provides an effective eco-friendly approach for disinfection. The perhydrolase (AcT) from Mycobacterium smegmatis catalyzes the perhydrolysis of acetate esters to generate the potent disinfectant, peracetic acid (PAA). In the presence of AcT and its two substrates, propylene glycol diacetate and H2O2, sufficient and continuous PAA is generated over an extended time to kill a wide range of bacteria with the enzyme dissolved in aqueous buffer. For extended self-disinfection, however, active and stable AcT bound onto or incorporated into a surface coating is necessary. In the current study, an active, stable and reusable AcT-based coating was developed by incorporating AcT into a polydopamine (PDA) matrix in a single step, thereby forming a biocatalytic composite onto a variety of surfaces. The resulting AcT-PDA composite coatings on glass, metal and epoxy surfaces yielded up to 7-log reduction of Gram-positive and Gram-negative bacteria when in contact with the biocatalytic coating. This composite coating also possessed potent antiviral activity, and dramatically reduced the infectivity of a SARS-CoV-2 pseudovirus within minutes. The single-step approach enables rapid and facile fabrication of enzyme-based disinfectant composite coatings with high activity and stability, which enables reuse following surface washing. As a result, this enzyme-polymer composite technique may serve as a general strategy for preparing antibacterial and antiviral surfaces for applications in health care and common infrastructure safety, such as in schools, the workplace, transportation, etc.


Assuntos
Antibacterianos/química , Antivirais/química , Proteínas de Bactérias/química , Hidrolases/química , Indóis/química , Polímeros/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , COVID-19/patologia , COVID-19/virologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/metabolismo , Materiais Revestidos Biocompatíveis/farmacologia , Estabilidade de Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Cinética , Mycobacterium smegmatis/enzimologia , Ácido Peracético/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos
2.
Mater Sci Eng C Mater Biol Appl ; 116: 111247, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806282

RESUMO

In recent years, electrospun polymer fibers have gained attention for various antibacterial applications. In this work, the effect of positively charged polymer fiber mats as antibacterial gauze is studied using electrospun poly(caprolactone) and polyaniline nanofibers. Chloroxylenol, an established anti-microbial agent is used for the first time as a secondary dopant to polyaniline during the electrospinning process to make the surface of the polyaniline fiber positively charged. Both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are used to investigate the antibacterial activity of the positively charged and uncharged polymer surfaces. The results surprisingly show that the polyaniline surface can inhibit the growth of both bacteria even when chloroxylenol is used below its minimum inhibitory concentration. This study provides new insights allowing the better understanding of dopant-based, intrinsically conducting polymer surfaces for use as antibacterial fiber mats.


Assuntos
Anti-Infecciosos , Nanofibras , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Polímeros , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA