Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003460

RESUMO

Adipose-derived stem cells (ADSCs) have incredible potential as an avenue to better understand and treat neurological disorders. While they have been successfully differentiated into neural stem cells and neurons, most such protocols involve 2D environments, which are not representative of in vivo physiology. In this study, human ADSCs were cultured in 1.1 kPa polyethylene-glycol 3D hydrogels for 10 days with B27, CultureOne (C1), and N2 neural supplements to examine the neural differentiation potential of ADSCs using both chemical and mechanical cues. Following treatment, cell viability, proliferation, morphology, and proteome changes were assessed. Results showed that cell viability was maintained during treatments, and while cells continued to proliferate over time, proliferation slowed down. Morphological changes between 3D untreated cells and treated cells were not observed. However, they were observed among 2D treatments, which exhibited cellular elongation and co-alignment. Proteome analysis showed changes consistent with early neural differentiation for B27 and C1 but not N2. No significant changes were detected using immunocytochemistry, potentially indicating a greater differentiation period was required. In conclusion, treatment of 3D-cultured ADSCs in PEG-based hydrogels with B27 and C1 further enhances neural marker expression, however, this was not observed using supplementation with N2.


Assuntos
Células-Tronco Neurais , Proteoma , Humanos , Tecido Adiposo , Células Cultivadas , Diferenciação Celular/fisiologia , Materiais Biocompatíveis , Hidrogéis/farmacologia
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569515

RESUMO

Neurological diseases are among the leading causes of disability and death worldwide and remain difficult to treat. Tissue engineering offers avenues to test potential treatments; however, the development of biologically accurate models of brain tissues remains challenging. Given their neurogenic potential and availability, adipose-derived stem cells (ADSCs) are of interest for creating neural models. While progress has been made in differentiating ADSCs into neural cells, their differentiation in 3D environments, which are more representative of the in vivo physiological conditions of the nervous system, is crucial. This can be achieved by modulating the 3D matrix composition and stiffness. Human ADSCs were cultured for 14 days in a 1.1 kPa polyethylene glycol-based 3D hydrogel matrix to assess effects on cell morphology, cell viability, proteome changes and spontaneous neural differentiation. Results showed that cells continued to proliferate over the 14-day period and presented a different morphology to 2D cultures, with the cells elongating and aligning with one another. The proteome analysis revealed 439 proteins changed in abundance by >1.5 fold. Cyclic nucleotide 3'-phosphodiesterase (CNPase) markers were identified using immunocytochemistry and confirmed with proteomics. Findings indicate that ADSCs spontaneously increase neural marker expression when grown in an environment with similar mechanical properties to the central nervous system.


Assuntos
Hidrogéis , Proteoma , Humanos , Células Cultivadas , Hidrogéis/farmacologia , Tecido Adiposo , Diferenciação Celular , Materiais Biocompatíveis , Células-Tronco , Sistema Nervoso
3.
J Neurosci Res ; 100(12): 2201-2212, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121155

RESUMO

Compression spinal cord injuries are a common cause of morbidity in people who experience a spinal cord injury (SCI). Either as a by-product of a traumatic injury or due to nontraumatic conditions such as cervical myelitis, compression injuries are growing in prevalence clinically and many attempts of animal replication have been described within the literature. These models, however, often focus on the traumatic side of injury or mimic short-term injuries that are not representative of the majority of compression SCI. Of this, nontraumatic spinal cord injuries are severely understudied and have an increased prevalence in elderly populations, adults, and children. Therefore, there is a need to critically evaluate the current animal models of compression SCI and their suitability as a method for clinically relevant data that can help reduce morbidity and mortality of SCI. In this review, we reviewed the established and emerging methods of animal models of compression SCI. These models are the clip, balloon, solid spacer, expanding polymer, remote, weight drop, calibrated forceps, screw, and strap methods. These methods showed that there is a large reliance on the use of laminectomy to induce injury. Furthermore, the age range of many studies does not reflect the elderly and young populations that commonly suffer from compression injuries. It is therefore important to have techniques and methods that are able to minimize secondary effects of the surgeries, and are representative of the clinical cases seen so that treatments and interventions can be developed that are specific.


Assuntos
Compressão da Medula Espinal , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Compressão da Medula Espinal/complicações , Traumatismos da Medula Espinal/complicações , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA