Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Org Biomol Chem ; 13(43): 10751-61, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26360423

RESUMO

A simple synthetic route has been devised for the production of coating agents that can give multivalent displays of saccharides on the surface of magnetite nanoparticles and phospholipid vesicles. A versatile and potentially high-throughput condensation reaction allowed the rapid synthesis of a variety of glycosylhydrazide conjugates with lipid, resorcinol or catechol termini, each in good yield and high anomeric purity. The hydrolytic stability of these adducts was assessed in D2O at different pD values using (1)H-NMR spectroscopy, whilst quartz crystal microbalance with dissipation monitoring (QCM-D) confirmed that the saccharide functionality on bilayers and on nanoparticles was still available to lectins. These multivalent saccharide displays promoted nanoparticle interactions with cells, for example N-acetylglucosamine-coated nanoparticles interacted much more effectively with 3T3 fibroblasts than uncoated nanoparticles with these cells. Despite potential sensitivity to oxidation, catechol coatings on magnetite nanoparticles were found to be more stable and generate better nanoparticle interactions with fibroblasts than resorcinol coatings.


Assuntos
Acetilglucosamina/química , Lipossomos/química , Nanopartículas de Magnetita/química , Monossacarídeos/química , Fosfolipídeos/química , Células 3T3 , Acetilglucosamina/metabolismo , Animais , Lectinas/metabolismo , Bicamadas Lipídicas/química , Magnetismo , Camundongos , Monossacarídeos/metabolismo , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
2.
Dent Mater ; 40(4): 716-727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395738

RESUMO

OBJECTIVES: This study aimed to compare two types of bioactive additives which were strontium-containing fluorinated bioactive glass (SrBGF) or strontium-containing fluorapatite (SrFA) added to sol-gel derived glass ionomer cement (SGIC). The objective was to develop antibacterial and mineralisation properties, using bioactive additives, to minimize the occurrence of caries lesions in caries disease. METHODS: Synthesized SrBGF and SrFA nanoparticles were added to SGIC at 1 wt% concentration to improve antibacterial properties against S. mutans, promote remineralisation, and hASCs and hDPSCs viability. Surface roughness and ion-releasing behavior were also evaluated to clarify the effect on the materials. Antibacterial activity was measured via agar disc diffusion and bacterial adhesion. Remineralisation ability was assessed by applying the material to demineralised teeth and subjecting them to a 14-day pH cycle, followed by microCT and SEM-EDS analysis. RESULTS: The addition of SrFA into SGIC significantly improved its antibacterial property. SGIC modified with either SrBGF or SrFA additives could similarly induce apatite crystal precipitation onto demineralised dentin and increase dentin density, indicating its ability to remineralise dentin. Moreover, this study also showed that SGIC modified with SrBGF or SrFA additives had promising results on the in vitro cytotoxicity of hASC and hDPSC. SIGNIFICANT: SrFA has superior antibacterial property as compared to SrBGF while demonstrating equal remineralisation ability. Furthermore, the modified SGIC showed promising results in reducing the cytotoxicity of hASCs and hDPSCs, indicating its potential for managing caries.


Assuntos
Cárie Dentária , Fluoretos , Humanos , Fluoretos/farmacologia , Fluoretos/química , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Estrôncio/farmacologia , Estrôncio/química , Antibacterianos/farmacologia , Antibacterianos/química , Apatitas/farmacologia , Cárie Dentária/terapia , Teste de Materiais
3.
J Biomed Mater Res A ; 111(9): 1406-1422, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37009913

RESUMO

In this work, three different modified cements, control apatite/beta-tricalcium phosphate cement (CPC), polymeric CPC (p-CPC), and bioactive glass added polymeric cement (p-CPC/BG) were evaluated regarding their physical properties and the responses of primary human osteoblast cells (HObs) and mesenchymal stem cells (MSCs). Although polyacrylic acid (PAA) increased compressive strength and Young's modulus of the cement, it could cause poor apatite phase formation, a prolonged setting time, and a lower degradation rate. Consequently, bioactive glass (BG) was added to PAA/cement to improve its physical properties, such as compressive strength, Young's modulus, setting time, and degradation. For in vitro testing, HObs viability was assessed under two culture systems with cement-preconditioned medium (indirect) and with cement (direct). HObs viability was examined in direct contact with cements treated by different prewashing conditions. HObs presented a more well spread morphology on cement soaked in medium overnight, as compared to other cements with no treatment and washing in PBS. In addition, the proliferation, differentiation, and total collagen production of both HObs and MSCs adhered to the cement were detected. Cells showed excellent proliferation on PAA/cement and PAA/BG/cement. Furthermore, the higher released Si ion and lower acidosis of PAA/BG/cement-conditioned medium resulted in an increase in osteogenic differentiation (HObs and MSCs) and enhanced collagen production (HObs in osteogenic medium and MSCs in control medium). Therefore, our findings suggest that BG incorporated PAA/apatite/ß-TCP cement could be a promising formula for bone repair applications.


Assuntos
Apatitas , Células-Tronco Mesenquimais , Humanos , Apatitas/farmacologia , Cimentos Ósseos/farmacologia , Osteogênese , Fosfatos de Cálcio/farmacologia , Colágeno , Osteoblastos
4.
J Mater Chem B ; 10(26): 5016-5027, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35723603

RESUMO

Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and ß-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for ß(1,4)-galactosyltransferase (ß4GalT1). ß4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the ß-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, ß4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.


Assuntos
Lipossomos , Oximas , Acetilglucosamina , Glicoconjugados , Oligossacarídeos
5.
J Mater Sci Mater Med ; 22(4): 1045-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21431355

RESUMO

Creating tissue-mimetic biomaterials able to deliver bioactive compounds after receipt of a remote and non-invasive trigger has so far proved to be challenging. The possible applications of such "smart" biomaterials are vast, ranging from subcutaneous drug delivery to tissue engineering. Self-assembled phospholipid vesicles (liposomes) have the ability to deliver both hydrophilic and hydrophobic drugs, and controlling interactions between functionalized vesicles and cells within biomaterials is an important step for targeted drug delivery to cells. We report an investigation of the interactions between thermally-sensitive and biotin-coated dipalmitoyl phosphatidylcholine vesicles and 3T3 fibroblast cells. The stability of these vesicles under physiological conditions was assessed and their interaction with the cell membranes of fibroblasts in media and alginate/fibronectin mixtures was studied. Stable vesicle-cell aggregates were formed in fluid matrices, and could be a model system for improving the delivery of remotely released drugs within vesicle-containing biomaterials.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Células 3T3 , Animais , Biotina/química , Biotinilação , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/química , Fluoresceína-5-Isotiocianato/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Camundongos , Rodaminas/química
6.
Bioinspir Biomim ; 16(4)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33706299

RESUMO

Objective. The use of diffusion magnetic resonance imaging (dMRI) opens the door to characterizing brain microstructure because water diffusion is anisotropic in axonal fibres in brain white matter and is sensitive to tissue microstructural changes. As dMRI becomes more sophisticated and microstructurally informative, it has become increasingly important to use a reference object (usually called an imaging phantom) for validation of dMRI. This study aims to develop axon-mimicking physical phantoms from biocopolymers and assess their feasibility for validating dMRI measurements.Approach. We employed a simple and one-step method-coaxial electrospinning-to prepare axon-mimicking hollow microfibres from polycaprolactone-b-polyethylene glycol (PCL-b-PEG) and poly(D, L-lactide-co-glycolic) acid (PLGA), and used them as building elements to create axon-mimicking phantoms. Electrospinning was firstly conducted using two types of PCL-b-PEG and two types of PLGA with different molecular weights in various solvents, with different polymer concentrations, for determining their spinnability. Polymer/solvent concentration combinations with good fibre spinnability were used as the shell material in the following co-electrospinning process in which the polyethylene oxide polymer was used as the core material. Following the microstructural characterization of both electrospun and co-electrospun fibres using optical and electron microscopy, two prototype phantoms were constructed from co-electrospun anisotropic hollow microfibres after inserting them into water-filled test tubes.Main results. Hollow microfibres that mimic the axon microstructure were successfully prepared from the appropriate core and shell material combinations. dMRI measurements of two phantoms on a 7 tesla (T) pre-clinical scanner revealed that diffusivity and anisotropy measurements are in the range of brain white matter.Significance. This feasibility study showed that co-electrospun PCL-b-PEG and PLGA microfibre-based axon-mimicking phantoms could be used in the validation of dMRI methods which seek to characterize white matter microstructure.


Assuntos
Biomimética , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Polímeros , Substância Branca
7.
Biomacromolecules ; 11(9): 2498-504, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20690614

RESUMO

Radially oriented submonolayer surfaces of 10-15 nm diameter cellulose nanowhiskers (CNWs) were prepared by spin-coating. The response of myoblasts (muscle cells) to the surfaces was assessed using atomic force microscopy (AFM), immunocytochemistry, and image analysis. Despite the small size of the CNWs, the myoblasts oriented along the CNW surfaces. Upon differentiation, the myoblasts produced striking radial patterns of myotubes, following the radial pattern of the CNWs. This facile method of nanopatterning surfaces may be applied where the directed growth of tissue is required and shows for the first time the potential of CNWs for tissue engineering applications.


Assuntos
Diferenciação Celular , Celulose/química , Músculo Esquelético/citologia , Mioblastos/química , Mioblastos/citologia , Nanotecnologia , Animais , Células Cultivadas , Adesões Focais , Processamento de Imagem Assistida por Computador , Técnicas Imunoenzimáticas , Camundongos , Microscopia de Força Atômica , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Plastificantes , Urocordados/citologia , Urocordados/metabolismo
8.
ACS Biomater Sci Eng ; 6(12): 6906-6916, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320623

RESUMO

Peripheral nerve injury is a common consequence of trauma with low regenerative potential. Electroconductive scaffolds can provide appropriate cell growth microenvironments and synergistic cell guidance cues for nerve tissue engineering. In the present study, electrically conductive scaffolds were prepared by conjugating poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) or dimethyl sulfoxide (DMSO)-treated PEDOT-PSS on electrospun silk scaffolds. Conductance could be tuned by the coating concentration and was further boosted by DMSO treatment. Analogue NG108-15 neuronal cells were cultured on the scaffolds to evaluate neuronal cell growth, proliferation, and differentiation. Cellular viability was maintained on all scaffold groups while showing comparatively better metabolic activity and proliferation than neat silk. DMSO-treated PEDOT-PSS functionalized scaffolds partially outperformed their PEDOT-PSS counterparts. Differentiation assessments suggested that these PEDOT-PSS assembled silk scaffolds could support neurite sprouting, indicating that they show promise to be used as a future platform to restore electrochemical coupling at the site of injury and preserve normal nerve function.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Poliestirenos , Seda , Tiofenos
9.
Mater Sci Eng C Mater Biol Appl ; 101: 217-227, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029314

RESUMO

Diffusion magnetic resonance imaging (dMRI) is considered as a useful tool to study solid tumours. However, the interpretation of dMRI signal and validation of quantitative measurements of is challenging. One way to address these challenges is by using a standard reference material that can mimic tumour cell microstructure. There is a growing interest in using hollow polymeric microspheres, mainly prepared by multiple steps, as mimics of cells in healthy and diseased tissue. The present work reports on tumour cell-mimicking materials composed of hollow microspheres for application as a standard material in dMRI. These microspheres were prepared via one-step co-electrospraying process. The shell material was poly(d,l-lactic-co-glycolic acid) (PLGA) polymers with different molecule weights and/or ratios of glycolic acid-to-lactic, while the core was polyethylene glycol (PEG) or ethylene glycol. The resultant co-electrosprayed products were characterised by optical microscopy, scanning electron microscopy (SEM) and synchrotron X-ray micro-CT. These products were found to have variable structures and morphologies, e.g. from spherical particles with/without surface hole, through beaded fibres to smooth fibres, which mainly depend on PLGA composition and core materials. Only the shell material of PLGA polymer with ester terminated, Mw 50,000-75,000 g mol-1, and lactide:glycolide 85:15 formed hollow microspheres via the co-electrospraying process using the core material of 8 wt% PEG/chloroform as the core. A water-filled test object (or phantom) was designed and constructed from samples of the material generated from co-electrosprayed PLGA microspheres and tested on a 7 T MRI scanner. The preliminary MRI results provide evidence that hollow PLGA microspheres can restrict/hinder water diffusion as cells do in tumour tissue, implying that the phantom may be suitable for use as a quantitative validation and calibration tool for dMRI.


Assuntos
Imagem de Difusão por Ressonância Magnética , Eletroquímica/métodos , Microesferas , Polímeros/química , Linhagem Celular Tumoral , Humanos , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Síncrotrons , Tomografia Computadorizada por Raios X
10.
Acta Biomater ; 4(2): 230-43, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18023627

RESUMO

The objective of this study was to assess cell viability, attachment, morphology, proliferation, and collagen and sulphated glycosaminoglycan (s-GAG) production by human annulus fibrosus (HAF) cells cultured in vitro in poly(d,l-lactide) (PDLLA)/Bioglass composite foams. PDLLA foams with different percentages (0, 5 and 30wt.%) of Bioglass particles were prepared by thermally induced phase separation (TIPS) and characterized by scanning electron microscopy (SEM). HAF cell viability in the PDLLA/Bioglass foam was analysed using Live/Dead staining. HAF cell attachment was observed using SEM. An assessment of cell proliferation was conducted using the WST-1 assay. The level of s-GAG and collagen produced by HAF cells was quantified using the 1,9-dimethylmethylene blue (DMMB) assay and Sircoltrade mark assay after 4 weeks of culture. The presence of collagen types I and II within the PDLLA/Bioglass composite foams was analysed using immunohistochemistry. Live/dead staining showed that many viable HAF cells were present on the top surface of the foams as well as penetrating into the internal pore structure, suggesting that the PDLLA/Bioglass composite materials are non-toxic and that the presence of Bioglass particles within PDLLA scaffolds does not inhibit HAF cell growth. The SEM observations revealed that more clusters of HAF cells were attached to the pore walls of both the PDLLA/5BG foam and the PDLLA/30BG foam when compared with the PDLLA/0BG foam. WST-1 assay performed over a period of 4 weeks showed an increased tendency of HAF cells to proliferate within both the PDLLA/5BG foam and the PDLLA/30BG foam when compared with both the tissue culture plastic control and the PDLLA/0BG foam, indicating the presence of Bioglass in the foam has a positive effect on HAF cell proliferation. Sircoltrade mark and DMMB assays showed that HAF cells cultured within the PDLLA/30BG foam had a greater ability to deposit collagen and proteoglycan when compared with the control and the PDLLA/0BG foam after 4 weeks in culture, suggesting that the increase of Bioglass content may induce microenvironmental changes which promote the production of extracellular matrix containing abundant collagen and s-GAG. The immunohistochemical analysis of collagen production demonstrated that collagen produced in all cultures was predominantly of type I. These findings provide preliminary evidence for the use of PDLLA/Bioglass composite as cell-carrier materials for future treatments of the intervertebral disc with damaged AF region.


Assuntos
Materiais Biocompatíveis , Cerâmica , Proteínas da Matriz Extracelular/biossíntese , Disco Intervertebral/citologia , Disco Intervertebral/metabolismo , Ácido Láctico , Polímeros , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Colágeno/biossíntese , Glicosaminoglicanos/biossíntese , Humanos , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Poliésteres , Engenharia Tecidual
11.
J Biomed Mater Res A ; 106(1): 255-264, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28891249

RESUMO

There is a clinical need for a synthetic bone graft substitute that can be used at sites of surgical intervention to promote bone regeneration. Poly(vinylphosphonic acid-co-acrylic acid) (PVPA-co-AA) has recently been identified as a potential candidate for use in bone tissue scaffolds. It is hypothesized that PVPA-co-AA can bind to divalent calcium ions on bone mineral surfaces to control matrix mineralization and promote bone formation. In this study, hydrogels of PVPA-co-AA have been produced and the effect of copolymer composition on the structure and properties of the gels was investigated. It was found that an increase in VPA content led to the production of hydrogels with high porosities and greater swelling capacities. Consequently, improved cell adhesion and proliferation was observed on these hydrogels, as well as superior cell spreading morphologies. Furthermore, whereas poly(acrylic acid) gels were shown to be relatively brittle, an increase in VPA content created more flexible hydrogels that can be more easily molded into bone defect sites. Therefore, this work demonstrates that the mechanical and cell adhesion properties of PVPA-co-AA hydrogels can be tuned for the specific application by altering the copolymer composition. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 255-264, 2018.


Assuntos
Acrilatos/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hidrogéis/farmacologia , Osteoblastos/efeitos dos fármacos , Acrilatos/síntese química , Acrilatos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Teste de Materiais , Porosidade , Engenharia Tecidual , Molhabilidade
12.
Adv Healthc Mater ; 7(23): e1800308, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260575

RESUMO

Repair of peripheral nerve injuries depends upon complex biology stemming from the manifold and challenging injury-healing processes of the peripheral nervous system. While surgical treatment options are available, they tend to be characterized by poor clinical outcomes for the injured patients. This is particularly apparent in the clinical management of a nerve gap whereby nerve autograft remains the best clinical option despite numerous limitations; in addition, effective repair becomes progressively more difficult with larger gaps. Nerve conduit strategies based on tissue engineering approaches and the use of silk as scaffolding material have attracted much attention in recent years to overcome these limitations and meet the clinical demand of large gap nerve repair. This review examines the scientific advances made with silk-based conduits for peripheral nerve repair. The focus is on enhancing bioactivity of the conduits in terms of physical guidance cues, inner wall and lumen modification, and imbuing novel conductive functionalities.


Assuntos
Traumatismos dos Nervos Periféricos/terapia , Seda/química , Animais , Hormônio do Crescimento/farmacologia , Regeneração Tecidual Guiada , Humanos , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/patologia , Polímeros/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Seda/genética , Seda/metabolismo , Engenharia Tecidual
13.
J Biomed Mater Res A ; 106(1): 168-179, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28884508

RESUMO

There is a clear clinical need for a bioactive bone graft substitute. Poly(vinyl phosphonic acid-co-acrylic acid) (PVPA-co-AA) has been identified as a promising candidate for bone regeneration but there is little evidence to show its direct osteogenic effect on progenitor or mature cells. In this study mature osteoblast-like cells (SaOS-2) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were cultured with PVPA-co-AA polymers with different VPA:AA ratio and at different concentrations in vitro. We are the first to report the direct osteogenic effect of PVPA-co-AA polymer on bone cells and, more importantly, this effect was dependent on VPA:AA ratio and concentration. Under the optimized conditions, PVPA-co-AA polymer not only has an osteoconductive effect, enhancing SaOS-2 cell mineralization, but also has an osteoinductive effect to promote hBM-MSCs' osteogenic differentiation. Notably, the same PVPA-co-AA polymer at different concentrations could lead to differential osteogenic effects on both SaOS-2 and hBM-MSCs in vitro. This study furthers knowledge of the PVPA-co-AA polymer in osteogenic studies, which is critical when utilizing the PVPA-co-AA polymer for the design of novel bioactive polymeric tissue engineering scaffolds for future clinical applications. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 168-179, 2018.


Assuntos
Acrilatos/farmacologia , Transplante Ósseo/métodos , Quelantes de Cálcio/farmacologia , Organofosfonatos/farmacologia , Osteogênese/efeitos dos fármacos , Polivinil/farmacologia , Acrilatos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Quelantes de Cálcio/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Organofosfonatos/química , Osteoblastos/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Polivinil/química , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Engenharia Tecidual
14.
Chem Commun (Camb) ; 54(11): 1347-1350, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29350727

RESUMO

ß(1,4)-Galactosyltransferase (ß4Gal-T1) and T. cruzi trans-sialidase (TcTS) have been used in a 'one-pot' cascade to provide vesicles (liposomes) with a trisaccharide coating. These soluble enzymes catalysed the transfer of galactose then sialic acid onto a synthetic N-acetylglucolipid embedded in the bilayers. Clustering of this substrate into microdomains increased the rate of sialylated lipid production, showing that an increase in ß4Gal-T1 activity is carried through the enzymatic cascade. These coatings modulated cell recognition. Hepatocellular carcinoma cells took up vesicles modified by ß4Gal-T1 alone more extensively than sialylated vesicles produced by 'one-pot' sequential enzymatic modification.


Assuntos
Galactosiltransferases/química , Glicolipídeos/metabolismo , Glicoproteínas/química , Lipossomos/metabolismo , Neuraminidase/química , Trissacarídeos/síntese química , Sequência de Carboidratos , Endocitose/fisiologia , Glicolipídeos/química , Glicosilação , Células Hep G2 , Humanos , Lipossomos/química , Trissacarídeos/química
15.
Biomaterials ; 28(11): 2010-20, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17250887

RESUMO

The objective of the present study was to assess cell attachment, proliferation and extracellular matrix (ECM) production by bovine annulus fibrosus (BAF) cells cultured in vitro in PDLLA/Bioglass composite foams. PDLLA foams incorporated with different percentages (0, 5 and 30wt%) of Bioglass particles were prepared by thermally induced phase separation (TIPS) process and characterized by scanning electron microscopy (SEM). BAF cell morphology and attachment within the PDLLA/Bioglass foams were analysed using SEM. An assessment of cell proliferation was conducted using the WST-1 assay. The amount of sulphated glycosaminoglycans (sGAG) were quantified using the 1,9-dimethylmethylene blue (DMMB) assay after 4 weeks in culture. Furthermore, the amount of collagen synthesis was determined using a hydroxyproline assay, and the presence of collagen types I and II was investigated using Western blotting. Our results reveal that PDLLA/Bioglass foam scaffolds can provide an appropriate microenvironment for BAF cell culture which enhances cell proliferation and promotes the production of sGAG, collagen type I and collagen type II. These findings provide preliminary evidence for the use of PDLLA/Bioglass composite scaffolds as cell-carrier materials for future treatments of intervertebral discs with damaged AF regions.


Assuntos
Materiais Biocompatíveis/química , Cerâmica/química , Matriz Extracelular/metabolismo , Ácido Láctico/análogos & derivados , Polímeros/química , Animais , Bovinos , Adesão Celular , Proliferação de Células , Colágeno/química , DNA/química , Glicosaminoglicanos/química , Hidroxiprolina/química , Ácido Láctico/química , Azul de Metileno/análogos & derivados , Azul de Metileno/farmacologia , Microscopia Eletrônica de Varredura , Poliésteres
16.
J Biomed Mater Res A ; 80(1): 24-33, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16958045

RESUMO

Hydroxyapatite has been successfully deposited onto Fecralloy substrate (a metal alloy with 22% Cr, 4.8% Al) by electrophoretic deposition in an attempt to promote the adhesion between coating and substrate, consequently to extend the lifetime of implants. Fecralloy has the ability to generate a dense and stable alpha-Al(2)O(3) layer "in situ" during thermal treatment, which will highly improve the adhesion and the corrosion resistance of the coating system. Phases and morphologies of HA coating were found to vary after sintering according to XRD and SEM analysis. Besides the physicochemical characterization, the effects of the Fecralloy, thermally generated oxide layer, and HA coating on the early and late responses of osteoblasts in vitro were determined. Cellular morphology and proliferation were studied up to 7 days. Quantitative assays of mineralization were conducted up to 14 days. Osteoblasts showed increased cell spreading and cell proliferation on metal substrates, with significantly higher mineralization on HA coating. The results in this study proved that Fecralloy is a biocompatible metal and the HA coating on Fecralloy provides a good candidate for orthopaedic and dental implants.


Assuntos
Calcificação Fisiológica , Materiais Revestidos Biocompatíveis , Implantes Dentários , Durapatita , Ferro , Osteoblastos/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Teste de Materiais , Osteoblastos/citologia
17.
J Biomed Mater Res A ; 82(4): 1022-32, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17377965

RESUMO

Nano-sized hydroxyapatite (HA) powders were produced by a hydrothermal method and a precipitation method. Spark plasma sintering (SPS) was used to fabricate nanostructured HA (NHA) using nano-sized HA powders as a precursor. Conventional sintering was employed to produce microstructured HA (MHA). Characteristics of HA powders and HA bulk ceramics after sintering were investigated by XRD, FTIR, SEM, TEM, particle size distribution, and AFM. Dense compacts consisting of equiaxed grains with an average grain size of approximately 100 nm were obtained by SPS. Human osteoblasts were cultured on both NHA and MHA and cell attachment, proliferation, and mineralization were evaluated. After 90 min incubation, the cell density on NHA surface was significantly higher than that of MHA and glass control, whereas average cell area of a spread cell was significantly lower on NHA surface compared to MHA and glass control after 4 h incubation. Matrix mineralization was determined after 7 and 14 days incubation by using alizarin red assay combined with cetylpyridinium chloride extraction. NHA shows significant enhancement (p < 0.05) in mineralization compared to MHA. Results from this study suggest that NHA may be a much better candidate for clinical use in terms of bioactivity.


Assuntos
Materiais Biocompatíveis , Durapatita , Nanoestruturas , Osteoblastos/citologia , Materiais Biocompatíveis/química , Substitutos Ósseos , Adesão Celular , Proliferação de Células , Células Cultivadas , Cerâmica , Fenômenos Químicos , Físico-Química , Durapatita/química , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Minerais/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Osteoblastos/metabolismo , Difração de Pó , Pós , Próteses e Implantes , Propriedades de Superfície
18.
Acta Biomater ; 3(5): 715-21, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17448740

RESUMO

The interactions of cells with synthetic surfaces are a critical factor in biomaterials design and it would be invaluable if these interactions could be precisely controlled and predicted. Hydrophobicity or lipophilicity of the surface is commonly used to rationalize cell attachment to materials. In the pharmaceutical sciences it is common practice to use logP, the partitioning coefficient between water and octanol, as a reliable indicator of the hydrophobicity or lipophilicity of (drug) molecules. A number of methods are available to reliably predict logP values directly from molecular structure. In this paper we demonstrate that logP values calculated on the basis of the molecular structure of a range of surface-tethered groups correlate well with cell spreading. To our knowledge this is the first method to predict cell spreading on chemically modified surfaces via nonspecific interactions.


Assuntos
Aminoácidos/administração & dosagem , Movimento Celular/fisiologia , Materiais Revestidos Biocompatíveis/administração & dosagem , Modelos Biológicos , Osteoblastos/fisiologia , Aminoácidos/química , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Simulação por Computador , Humanos , Teste de Materiais , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Estatística como Assunto , Propriedades de Superfície
19.
J Biomed Mater Res B Appl Biomater ; 105(8): 2581-2591, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27712036

RESUMO

The polymeric blend of poly (lactic-co-glycolic acid) (PLGA) and polyisoprene (PI) has recently been explored for application as stents for tracheal stenosis and spring for the treatment of craniosynostosis. From the positive results presented in other biomedical applications comes the possibility of investigating the application of this material as scaffold for tissue engineering (TE), acquiring a deeper knowledge about the polymeric blend by exploring a new processing technique while attending to the most fundamental demands of TE scaffolds. PLGA/PI was processed into randomly oriented microfibers through the dripping technique and submitted to physical-chemical and in vitro characterization. The production process of fibers did not show an effect over the polymer's chemical composition, despite the fact that PLGA and PI were observed to be immiscible. Mechanical assays reinforce the suitability of these scaffolds for soft tissue applications. Skeletal muscle cells demonstrated increases in metabolic activity and proliferation to the same levels of the control group. Human dermal fibroblasts didn't show the same behaviour, but presented cell growth with the same development profile as presented in the control group. It is plausible to believe that PLGA/PI fibrous three-dimensional scaffolds are suitable for applications in soft tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2581-2591, 2017.


Assuntos
Butadienos/química , Derme/metabolismo , Fibroblastos/metabolismo , Hemiterpenos/química , Ácido Láctico/química , Teste de Materiais , Mioblastos Esqueléticos/metabolismo , Pentanos/química , Ácido Poliglicólico/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular , Derme/citologia , Fibroblastos/citologia , Humanos , Camundongos , Mioblastos Esqueléticos/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
20.
J R Soc Interface ; 14(126)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077764

RESUMO

The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Teste de Materiais , Osteoblastos/metabolismo , Animais , Linhagem Celular , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Camundongos , Osteoblastos/citologia , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA