Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Langmuir ; 33(3): 773-782, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28006902

RESUMO

Immunoassays are ubiquitous across research and clinical laboratories, yet little attention is paid to the effect of the substrate material on the assay performance characteristics. Given the emerging interest in wearable immunoassay formats, investigations into substrate materials that provide an optimal mix of mechanical and bioanalytical properties are paramount. In the course of our research in developing wearable immunoassays which can penetrate skin to selectively capture disease antigens from the underlying blood vessels, we recently identified significant differences in immunoassay performance between gold and polycarbonate surfaces, even with a consistent surface modification procedure. We observed significant differences in PEG density, antibody immobilization, and nonspecific adsorption between the two substrates. Despite a higher PEG density formed on gold-coated surfaces than on amine-functionalized polycarbonate, the latter revealed a higher immobilized capture antibody density and lower nonspecific adsorption, leading to improved signal-to-noise ratios and assay sensitivities. The major conclusion from this study is that in designing wearable bioassays or biosensors, the design and its effect on the antifouling polymer layer can significantly affect the assay performance in terms of analytical specificity and sensitivity.


Assuntos
Ensaio de Imunoadsorção Enzimática/instrumentação , Polietilenoglicóis/química , Adsorção , Animais , Ouro/química , Imunoglobulina G/química , Camundongos , Cimento de Policarboxilato/química , Silício/química , Propriedades de Superfície
2.
Langmuir ; 31(5): 1746-54, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25598325

RESUMO

Polycaprolactone (PCL) is a widely utilized bioresorbable polymer in tissue engineering applications. However, the absence of intrinsic functional groups in the polymer backbone necessitates the incorporation of functional chemistries to enable the further addition of bioactive molecules to PCL-based surfaces and scaffolds. The current study aimed to incorporate two different functional groups, amine and carboxylate, first on two-dimensional (2D) spin-coated PCL films and, thereafter, throughout all surfaces within three-dimensional (3D) porous PCL-based scaffolds, produced using the thermally induced phase separation (TIPS) method, but in a spatially separated manner. Specifically, gamma irradiation induced grafting of acrylic acid (AA) and 2-aminoethyl methacrylate hydrochloride (AEMA) onto PCL was performed in selected solvents and the resulting substrates were characterized using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements to determine the surface free energy. Results demonstrated that stepwise graft copolymerization of AEMA and AA allows the fabrication of dual-functional surfaces, with chemistry depending on the order of grafting of the two monomers. In addition, 3D scaffolds could be decorated exclusively with carboxylate groups in the interior, while the outer surface displayed dual-functionality. This simple surface modification methodology, with the ability to create spatially separated surface functional groups throughout 3D porous scaffolds post their fabrication, has the potential to be applied to many current and future scaffold systems being investigated in the field of tissue engineering.


Assuntos
Poliésteres/química , Alicerces Teciduais/química , Acrilatos/química , Etilaminas/química , Metacrilatos/química , Polimerização , Propriedades de Superfície , Termodinâmica
3.
Biomacromolecules ; 16(1): 389-403, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25469767

RESUMO

Self-assembled pseudopolyrotaxane (PPR) hydrogels formed from Pluronic polymers and α-cyclodextrin (α-CD) have been shown to display a wide range of tailorable physical and chemical properties that may see them exploited in a multitude of future biomedical applications. Upon the mixing of both components, these self-assembling hydrogels reach a metastable thermodynamic state that is defined by the concentrations of both components in solution and the temperature. However, at present, their potential is severely limited by the very nature by which they form and hence also disassemble. Even if the temperature is kept constant, PPR hydrogels will dissociate and collapse within a few hours when immersed in a liquid (such as cell culture media) that contains a lower concentrations of, or no, Pluronic or α-CD due to differences in chemical potential driving dissolution. In this article, an enzymatically mediated covalent cross-linking function and branched eight-arm poly(ethylene glycol) (PEG) were thus introduced into the PPR hydrogels to improve their robustness to such environmental changes. The eight-arm PEG also acted as an end-capping group to prevent the dethreading of the α-CD molecules. The covalent cross-linking successfully extended the lifetime of the hydrogels when placed in cell culture media from a few hours to up to 1 week, with the ability to control the degradation rate (now initiated by hydrolysis of the introduced ester bonds and not by dissolution) by changing the amount of eight-arm PEG present in the hydrogels. Highly tunable hydrogels were obtained with an elastic modulus between 20 and 410 kPa and a viscous modulus between 150 Pa and 22 kPa by varying the concentrations of α-CD and eight-arm PEG. Sustained release of a model drug from the hydrogels was achieved, and viability of mouse fibroblasts encapsulated in these hydrogels was assessed. These self-assembling, hydrolytically degradable, and highly tunable hydrogels are seen to have potential applications in tissue engineering relying on controlled drug or cell delivery to sites targeted for repair.


Assuntos
Ciclodextrinas/química , Hidrogéis/química , Poloxâmero/química , Polietilenoglicóis/química , Rotaxanos/química , Animais , Meios de Cultura , Sistemas de Liberação de Medicamentos , Camundongos , Células NIH 3T3 , Engenharia Tecidual
4.
Macromol Biosci ; 24(2): e2300268, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794635

RESUMO

Bone metastasized breast cancer reduces the quality of life and median survival. Targeted delivery of small interfering RNA (siRNA) and chemotherapeutic drugs using nanoparticles (NPs) is a promising strategy to overcome current limitations in treating these metastatic breast cancers. This research develops alendronate conjugated polyethylene glycol functionalized chitosan (ALD-PEG-CHI) NP for the delivery of cell death siRNA (CD-siRNA) and curcumin (CUR) and explores its targeting ability and in vitro cell cytotoxicity. Polyethylene glycol functionalized CHI (mPEG-CHI) NPs serve as control. The size of CD-siRNA loaded NPs is below 100 nm while CUR loaded NPs is below 200 nm, with near neutral zeta potential for all NPs. The CUR encapsulation efficiency (EE) is 70% and 88% for targeted and control NPs, respectively, while complete encapsulation of CD-siRNA is achieved in both NP systems. The bone targeting ability of CY5-dsDNA loaded ALD-PEG-CHI NPs using hydroxyapatite discs is fivefold compared to control indicating ALD presentation at the targeting NP surface. Delivery of CD-siRNA loaded NPs and CUR loaded NPs show synergistic and additive growth inhibition effects against MCF-7 cells by mPEG-CHI and ALD-PEG-CHI NPs, respectively. Overall, these in vitro results illustrate the potential of the targeted NPs as an effective therapeutic system toward bone metastasized breast cancer.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Quitosana , Curcumina , Nanopartículas , Osteossarcoma , Humanos , Feminino , Curcumina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Alendronato/farmacologia , RNA Interferente Pequeno , Qualidade de Vida , Polietilenoglicóis , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Tamanho da Partícula
5.
Int J Biol Macromol ; 257(Pt 2): 128644, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065444

RESUMO

Exploring the degradation behaviour of biomaterials in a complex in vitro physiological environment can assist in predicting their performance in vivo, yet this aspect remains largely unexplored. In this study, the in vitro degradation over 12 weeks of porous poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) bone scaffolds in human osteoblast (hOB) culture was investigated. The objective was to evaluate how the presence of cells influenced both the degradation behaviour and mechanical stability of these scaffolds. The molecular weight (Mw) of the scaffolds decreased with increasing incubation time and the Mw reduction rate (6.2 ± 0.4 kg mol-1 week-1) was similar to that observed when incubated in phosphate buffered saline (PBS) solution, implying that the scaffolds underwent hydrolytic degradation in hOB culture. The mass of the scaffolds increased by 0.8 ± 0.2 % in the first 4 weeks, attributed to cells attachment and extracellular matrix (ECM) deposition including biomineralisation. During the first 8 weeks, the nominal compressive modulus, E⁎, of the scaffolds remained constant. However, it increased significantly from Week 8 to 12, with increments of 55 % and 42 % in normal and lateral directions, respectively, attributed to the reinforcement effect of cells, ECM and minerals attached on the surface of the scaffold. This study has highlighted, that while the use of PBS in degradation studies is suitable for evaluating Mw changes it cannot predict changes in mechanical properties to PHBV scaffolds in the presence of cells and culture media. Furthermore, the PHBV scaffolds had mechanical stability in cell culture for 12 weeks validating their suitability for tissue engineering applications.


Assuntos
Hidroxibutiratos , Polímeros , Engenharia Tecidual , Alicerces Teciduais , Humanos , Porosidade , Engenharia Tecidual/métodos , Técnicas de Cultura de Células , Poliésteres/farmacologia
6.
Biomacromolecules ; 14(10): 3780-92, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24001031

RESUMO

The results of a systematic investigation into the gelation behavior of α-cyclodextrin (α-CD) and Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers) pseudopolyrotaxane (PPR) hydrogels are reported here in terms of the effects of temperature, α-CD concentration, and Pluronic type (Pluronic F68 and Pluronic F127). It was found that α-CD significantly modifies the gelation behavior of Pluronic solutions and that the PPR hydrogels are highly sensitive to changes in the α-CD concentration. In some cases, the addition of α-CD was found to be detrimental to the gelation process, leading to slower gelation kinetics and weaker gels than with Pluronic alone. However, in other cases, the hydrogels formed in the presence of the α-CDs reached higher moduli and showed faster gelation kinetics than with Pluronic alone and in some instances α-CD allowed the formation of hydrogels from Pluronic solutions that would normally not undergo gelation. Depending on composition and ratio of α-CD/Pluronic, these highly viscoelastic hydrogels displayed elastic shear modulus values ranging from 2 kPa to 7 MPa, gelation times ranging from a few seconds to a few hours and self-healing behaviors post failure. Using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we probed the resident structure of these systems, and from these insights we have proposed a new molecular mechanism that accounts for the macroscopic properties observed.


Assuntos
Géis/síntese química , Hidrogéis/química , Poloxâmero/química , alfa-Ciclodextrinas/química , Géis/química , Cinética , Estrutura Molecular , Polietilenoglicóis/química , Reologia , Temperatura , Fatores de Tempo , Viscosidade
7.
Biomacromolecules ; 14(2): 413-23, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23259935

RESUMO

As stem-cell-based therapies rapidly advance toward clinical applications, there is a need for cheap, easily manufactured, injectable gels that can be tailored to carry stem cells and impart function to such cells. Herein we describe a process for making hydrogels composed of hydroxyphenyl propionic acid (HPA) conjugated, branched poly(ethylene glycol) (PEG) via an enzyme mediated, oxidative cross-linking method. Functionalization of the branched PEG with HPA at varying degrees of substitution was confirmed via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and (1)H NMR. The versatility of this hydrogel system was exemplified through variations in the degree of HPA substitution, polymer concentration, and the concentration of cross-linking reagents (horseradish peroxidase and H(2)O(2)), which resulted in a range of mechanical properties and gelation kinetics for these gels. Cross-linking of the PEG-HPA conjugate with a recombinantly produced Fibronectin fragment (Type III domains 7-10) encouraged attachment and spreading of human mesenchymal stem cells (hMSCs) when assessed in both two-dimensional and three-dimensional formats. Interestingly, when encapsulated in both nonfunctionalized and functionalized cross-linked PEG-HPA gels, MSCs showed good viability over all time periods assessed. With tunable gelation kinetics and mechanical properties, these hydrogels provide a flexible in vitro cell culture platform that will likely have significant utility in tissue engineering as an injectable delivery platform for cells to sites of tissue damage.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Células-Tronco Mesenquimais/fisiologia , Polietilenoglicóis/química , Técnicas de Cultura de Células , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Fenilpropionatos/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Alicerces Teciduais
8.
Int J Biol Macromol ; 242(Pt 4): 124984, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244331

RESUMO

Injectable self-healing hydrogels are attractive materials for use as wound dressings. To prepare such hydrogels, the current study used quaternized chitosan (QCS) to improve the solubility and antibacterial activity and oxidized pectin (OPEC) to introduce aldehyde groups for Schiff's base reaction with the amine groups from QCS. Self-healing hydrogels were made by co-injection of polymer solutions at specific polymer concentrations and reagent ratios that optimized both Schiff's base reactions and ionic interactions. The optimal hydrogel displayed self-healing 30 min after cutting and continuous self-healing during continuous step strain analysis, rapid gelation (< 1 min), a storage modulus of 394 Pa, and hardness of 700 mN, and compressibility of 162 mN s. The adhesiveness of this hydrogel (133 Pa) was within a suitable range for application as a wound dressing. The extraction media from the hydrogel displayed no cytotoxicity to NCTC clone 929 cells and higher cell migration than the control. While the extraction media from the hydrogel was found not to have antibacterial properties, QCS was verified as having MIC50 of 0.04 mg/mL against both E. coli and S. aureus. Therefore, this injectable self-healing QCS/OPEC hydrogel has the potential use as a biocompatible hydrogel material for wound management.


Assuntos
Quitosana , Quitosana/química , Hidrogéis/química , Cicatrização , Escherichia coli , Staphylococcus aureus , Pectinas/farmacologia , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens
9.
Biomacromolecules ; 13(3): 905-17, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22296594

RESUMO

Dermatan sulfate (DS) is a glycosaminoglycan (GAG) with a great potential as a new therapeutic agent in tissue engineering. The aim of the present study was to investigate the formation of polyelectrolyte complexes (PECs) between chitosan and dermatan sulfate (CS/DS) and delivery of DS from PEC-containing alginate/chitosan/dermatan sulfate (Alg/CS/DS) microspheres for application in tissue regeneration. The CS/DS complexes were initially formed at different conditions including varying CS/DS ratio (positive/negative charge ratio), buffer, and pH. The obtained CS/DS complexes exhibited stronger electrostatic interaction, smaller complex size, and more stable colloidal structure when chitosan was in large excess (CS/DS 3:1) and prepared at pH 3.5 as compared to pH 5 using acetate buffer. The CS/DS complexes were subsequently incorporated into an alginate matrix by spray drying to form Alg/CS/DS composite microspheres with a DS encapsulation efficiency of 90-95%. The excessive CS induced a higher level of sustained DS release into Tris buffer (pH 7.4) from the microspheres formulated at pH 3.5; however, the amount of CS did not have a significant effect on the release from the microspheres formulated at pH 5. Significant cell proliferation was stimulated by the DS released from the microspheres in vitro. The present results provide a promising drug delivery strategy using PECs for sustained release of DS from microspheres intended for site-specific drug delivery and ultimately for use in tissue engineering.


Assuntos
Alginatos/administração & dosagem , Quitosana/administração & dosagem , Dermatan Sulfato/administração & dosagem , Sistemas de Liberação de Medicamentos , Eletrólitos/química , Microesferas , Regeneração/efeitos dos fármacos , Animais , Materiais Biocompatíveis/administração & dosagem , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Engenharia Tecidual
10.
Int J Biol Macromol ; 221: 204-211, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36058393

RESUMO

PEGylation is a common method use to modify the physiochemical properties and increase the solubility of chitosan (CHI). Knowledge of optimal reaction conditions for PEGylation of CHI underpins its ongoing use in nanomedicine. This study synthesised methoxy polyethyleneglycol grafted CHI (mPEG-CHI) using carbodiimide-mediated coupling. The effect of reagent concentrations and pH on the degree of substitution (DS) and the PEGylation yield (conversion of free PEG to conjugated PEG) was evaluated through detailed chemical characterisation. Within the parameter space investigated, optimised reaction conditions (NH2: COOH:NHS:EDC of 3.5:1:1:10, pH = 5) resulted in a DS of 24 % and a PEGylation yield of 84 %. An EDC-derived adduct formed at pH ≥ 5.5 and at a 15-fold excess of EDC relative to COOH. The adduct was evaluated to be a guanidine derivative formed by the reaction of the amine group of CHI directly with EDC. DS ≥ 12 % imparted water solubility to CHI at physiological pH and mPEG-CHI (0.2-1.0 mg/mL) was not cytotoxic against the breast cancer cell lines MCF-7 and MDA-MB-231, indicating its suitability for medical applications.


Assuntos
Quitosana , Quitosana/química , Polietilenoglicóis/química , Solubilidade , Carbodi-Imidas
11.
Biomater Adv ; 135: 212748, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35929220

RESUMO

Incorporation of a bioactive mineral filler in a biodegradable polyester scaffold is a promising strategy for scaffold assisted bone tissue engineering (TE). The current study evaluates the in vitro behavior of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/Akermanite (AKM) composite scaffolds manufactured using selective laser sintering (SLS). Exposure of the mineral filler on the surface of the scaffold skeleton was evident from in vitro mineralization in PBS. PHBV scaffolds and solvent cast films served as control samples and all materials showed preferential adsorption of fibronectin compared to serum albumin as well as non-cytotoxic response in human osteoblasts (hOB) at 24 h. hOB culture for up to 21 days revealed that the metabolic activity in PHBV films and scaffolds was significantly higher than that of PHBV/AKM scaffolds within the first two weeks of incubation. Afterwards, the metabolic activity in PHBV/AKM scaffolds exceeded that of the control samples. Confocal imaging showed cell penetration into the porous scaffolds. Significantly higher ALP activity was observed in PHBV/AKM scaffolds at all time points in both basal and osteogenic media. Mineralization during cell culture was observed on all samples with PHBV/AKM scaffolds exhibiting distinctly different mineral morphology. This study has demonstrated that the bioactivity of PHBV SLS scaffolds can be enhanced by incorporating AKM, making this an attractive candidate for bone TE application.


Assuntos
Poliésteres , Alicerces Teciduais , Cerâmica , Humanos , Hidroxibutiratos , Lasers , Porosidade
12.
Langmuir ; 26(19): 15409-17, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20812688

RESUMO

Successful implantation of any biomaterial depends on its mechanical, architectural, and surface properties. Materials with good bulk properties seldom possess the appropriate surface characteristics required for good biointegration. The present study investigates the results of surface modification of a highly porous, fully fluorinated polymeric substrate, expanded poly(tetrafluoroethylene) (ePTFE), with a view to improving the surface bioactivity and hence ultimately its biointegration. Modification involved gamma irradiation-induced graft copolymerization with the monomers monoacryloxyethyl phosphate (MAEP) and methacryloxyethyl phosphate (MOEP) in various solvent systems (water, methanol, methyl ethyl ketone, and mixtures thereof). In order to determine the penetration depth of the graft copolymer into the pores and/or the bulk of the ePTFE membranes, angle-dependent X-ray photoelectron spectroscopy (XPS) and magnetic resonance imaging (MRI) were used. It was found that the penetration depth was critically affected by the choice of monomer and solvent as well as by the technique used to remove dissolved oxygen from the grafting mixture: nitrogen degassing versus vacuum. Difficulties due to the porous nature of the membranes in establishing the lateral position of the graft copolymers were largely overcome by combining data from microattenuated total reflectance Fourier transfer infrared (µ-ATR-FTIR) mapping and time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. Results show that the large variation in graft heterogeneity found between different samples is largely an effect of the underlying substrate and choice of monomer. The results from this study provide the necessary knowledge and experimental data to control both the graft copolymer lateral position and depth of penetration in these porous ePTFE membranes.


Assuntos
Politetrafluoretileno/química , Imageamento por Ressonância Magnética , Espectrometria de Massa de Íon Secundário , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral/métodos
13.
Biointerphases ; 15(6): 061010, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276701

RESUMO

Surface modification of biomaterials is a strategy used to improve cellular and in vivo outcomes. However, most studies do not evaluate the lifetime of the introduced surface layer, which is an important aspect affecting how a biomaterial will interact with a cellular environment both in the short and in the long term. This study evaluated the surface layer stability in vitro in buffer solution of materials produced from poly(lactic-co-glycolic acid) (50:50) and polycaprolactone modified by hydrolysis and/or grafting of hydrophilic polymers using grafting from approaches. The data presented in this study highlight the shortcomings of using model substrates (e.g., spun-coated films) rather than disks, particles, and scaffolds. It also illustrates how similar surface modification strategies in some cases result in very different lifetimes of the surface layer, thus emphasizing the need for these studies as analogies cannot always be drawn.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Materiais Biocompatíveis/metabolismo , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia Fotoeletrônica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de Superfície
14.
Biointerphases ; 15(3): 031011, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527100

RESUMO

Protein adsorption to biomaterial surfaces is important for the function of such materials with anchorage-dependent cell adhesion requiring the presence of adsorbed proteins. The current study evaluated five solid surfaces with poly(acrylic acid) (PAA) grafted from the surface of a poly(tetrafluoroethylene) membrane with respect to the adsorption of serum albumin (SA), lactoferrin (Lf), and lysozyme (Lys) from a phosphate buffer and NaCl solution or water for specific combinations. With the use of x-ray photoelectron spectroscopy, the relative amounts and protein layer thickness were evaluated. SA adsorption was governed by ionic repulsive forces and hydrophobic interactions as evidenced from an increase in the protein adsorption at lower pH (6.5 compared to 7.4) and a correlation with surface coverage when water (pH 6.5) was used as the medium. The adsorption of Lf and Lys followed similar trends for all samples. In general, ionic attractive forces dominated and a strong correlation of increasing protein adsorption with the PAA chain length was evident. This study concluded that all surfaces appear suitable for use in biomaterial applications where tissue ingrowth is desired and that the enhanced protein adsorption in a medium with high ionic strength (e.g., biological fluid) correlates with the PAA chain length rather than the surface coverage.


Assuntos
Resinas Acrílicas/química , Fluorocarbonos/química , Membranas Artificiais , Proteínas/química , Adsorção , Animais , Bovinos , Galinhas , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície
15.
Gene ; 428(1-2): 53-8, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18930122

RESUMO

MC3T3-E1 cells demonstrate a lag in osteogenic development when seeded onto Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV), a biomaterial with substantial potential for bone tissue repair. To determine if this was due to the priority of extracellular matrix (ECM) remodelling over other developmental processes, gene expression levels of proteins involved in the production, maintenance and turnover of the ECM were compared between cells grown on PHBV and tissue culture plastic (TCP) 24 h after seeding. When grown on PHBV, MC3T3-E1 cells up-regulated proteins such as the matrix metalloproteinases and down-regulated the expression of proteins such as collagens that are involved in cell-substrate interactions, but in later-stage processes. The results also suggest that proteins such as fibronectin and aggrecan, and particularly osteopontin, may be more suitable candidates for PHBV functionalization for optimal MC3T3-E1 cell growth than proteins like osteonectin, periostin, vitronectin or collagen. This study confirms the importance of understanding the specific response of therapeutically-relevant cells, such as human stem cells, to candidate biomaterial surfaces in order to achieve optimal regenerative therapies.


Assuntos
Adesão Celular/fisiologia , Matriz Extracelular/enzimologia , Osteoblastos/metabolismo , Peptídeo Hidrolases/metabolismo , Poliésteres/metabolismo , Células 3T3 , Animais , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Poliésteres/química , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Biomed Mater Res B Appl Biomater ; 107(8): 2596-2610, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30903652

RESUMO

Scaffold assisted tissue engineering presents a promising approach to repair diseased and fractured bone. For successful bone repair, scaffolds need to be made of biomaterials that degrade with time and promote osteogenesis. Compared to the commonly used ß-tricalcium phosphate scaffolds, Akermanite (AKM) scaffolds were found to degrade faster and promote more osteogenesis. The objective of this study is to synthesize AKM micro and nanoparticle reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate; PHBV) composite scaffolds using selective laser sintering (SLS). The synthesized composite scaffolds had an interconnected porous microstructure (61-64% relative porosity), large specific surface areas (31.1-64.2 mm-1 ) and pore sizes ranging from 303 to 366 and 279 to 357 µm in the normal and lateral direction, respectively, which are suitable for bone tissue repair. The observed hydrophilic nature of the scaffolds and the swift water uptake was due to the introduction of numerous carboxylic acid groups on the scaffold surface after SLS, circumventing the need for postprocessing. For the composite scaffolds, large amounts of AKM particles were exposed on the skeleton surface, which is a requirement for cell attachment. In addition, the particles embedded inside the skeleton helped to significantly reinforce the scaffold structure. The compressive strength and modulus of the composite scaffolds were up to 7.4 and 103 MPa, respectively, which are 149 and 197% of that of the pure PHBV scaffolds. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2596-2610, 2019.


Assuntos
Lasers , Poliésteres/química , Alicerces Teciduais/química
17.
Chem Commun (Camb) ; (28): 3314-6, 2008 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-18622455

RESUMO

We have demonstrated that the unacknowledged presence of almost 30% diene impurity in some commercial phosphate monomers had not only a significant effect on the molecular structure (topology) of a series of synthesized polymers but the instability of the ester functionalities during these polymerizations resulted in unexpectedly complex co-polymer chemistry.


Assuntos
Contaminação de Medicamentos , Metacrilatos/química , Compostos Organofosforados/química , Polímeros/síntese química , Reagentes de Ligações Cruzadas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
18.
Biointerphases ; 13(6): 06D501, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261734

RESUMO

The design of current implants produced from biodegradable polyesters is based on strength and rate of degradation and tailored by the choice of polyester used. However, detailed knowledge about the degradation mechanism of surface modified materials with applications in biomaterials science and tissue engineering is currently lacking. This perspective aims to outline the need for a greater focus on analyzing the degradation of modified polyesters to ensure they can fulfil their intended function and that degradation products can effectively be cleared from the body. The status of the literature regarding surface modified polyesters is summarized to illustrate the main aspects investigated in recent studies and specifically the number of studies investigating the fate of the materials upon degradation.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Propriedades de Superfície , Biotransformação , Taxa de Depuração Metabólica
19.
Biomaterials ; 28(12): 2127-36, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17257666

RESUMO

The glycosaminoglycan sugar heparan sulfate (HS) is an attractive agent for the repair of bone defects due to its ability to regulate endogenous growth factors. The sustained delivery of HS to the localized wound site over the period of healing which can last for over 1 month may prove advantageous for its therapeutic use. In this study we investigated the encapsulation of HS by the water-in oil-in water (W(1)/O/W(2)) technique in polycaprolactone (PCL) microcapsules as a prolonged delivery device. Encapsulation efficiencies of 70% could be achieved by using a 1:1 mixture of dichloromethane (DCM) and acetone as the solvent in the organic phase, while DCM alone gave poor encapsulation. Although addition of polyvinyl alcohol (PVA) to the drug phase did not affect the size or drug loading of the microcapsules, it did however produce a large change in the morphology and drug distribution, which resulted in different release rates. Release from capsules made with PVA in the drug phase reached 60% after 40 days, while those made with water in the drug phase completed release after 20 days. In vitro biocompatibility studies were performed and detected no increase in cell death in human mesenchymal stem cells (hMSC) or induction of an inflammatory response in macrophages after exposure to release products from HS-loaded microcapsules. The released HS retained its ability to increase the proliferation of hMSC after the encapsulation process. These results indicate that encapsulation of HS by the W(1)/O/W(2) method creates a promising device for the repair of bone tissue.


Assuntos
Materiais Biocompatíveis , Heparitina Sulfato/farmacologia , Animais , Células Cultivadas , Composição de Medicamentos , Consolidação da Fratura , Heparitina Sulfato/química , Humanos , Camundongos , Microscopia Eletrônica de Varredura
20.
Biointerphases ; 12(2): 02C413, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28565915

RESUMO

The modification of biomaterials by radiation induced grafting is a promising method to improve their bioactivity. Successful introduction of carboxyl and amine functional groups on the surface of a polytetrafluoroethylene membrane was achieved by grafting of acrylic acid (AA) and 2-aminoethyl methacrylate hydrochloride (AEMA) using simultaneous gamma irradiation grafting. Chemical characterization by attenuated total reflectance Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy confirmed the presence of amine and carboxylate functionalities and indicated that all protonated amines formed ion pairs with carboxyl groups, but not all carboxyl are involved in ion pairing. It was found that the irradiation doses (2, 5, or 10 kGy) affected the grafting outcome only when sulfuric acid (0.5 or 0.9 M) was added as a polymerization enhancer. The use of the inorganic acid successfully enhanced the total graft yield (GY), but the changes in the graft extent (GE) were not conclusive. Dual functional films were produced by either a one- or a two-step process. Generally, higher GY and GE values were observed for the samples produced by the two-step grafting of AA and AEMA. The in vitro mineralization in 1.5× simulated body fluid (SBF) induced the formation of carbonated hydroxyapatite as verified by FITR. All samples showed an increase in weight after mineralization with significantly larger increases observed for the samples which had the 1.5× SBF changed every third day compared to every seventh. For the dual functional samples, it was found that the sample grafted by the one-step method shows a significantly higher increase in weight despite a much lower GY compared to the sample prepared by the two-step method and this was attributed to the different architecture of grafted chains.


Assuntos
Durapatita/química , Polímeros de Fluorcarboneto/química , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA