Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Dent Assoc ; 152(12): 981-990, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34538418

RESUMO

BACKGROUND: Dental procedures often produce aerosols and spatter, which have the potential to transmit pathogens such as severe acute respiratory syndrome coronavirus 2. The existing literature is limited. METHODS: Aerosols and spatter were generated from an ultrasonic scaling procedure on a dental manikin and characterized via 2 optical imaging methods: digital inline holography and laser sheet imaging. Capture efficiencies of various aerosol mitigation devices were evaluated and compared. RESULTS: The ultrasonic scaling procedure generated a wide size range of aerosols (up to a few hundred µm) and occasional large spatter, which emit at low velocity (mostly < 3 m/s). Use of a saliva ejector and high-volume evacuator (HVE) resulted in overall reductions of 63% and 88%, respectively, whereas an extraoral local extractor (ELE) resulted in a reduction of 96% at the nominal design flow setting. CONCLUSIONS: The study results showed that the use of ELE or HVE significantly reduced aerosol and spatter emission. The use of HVE generally requires an additional person to assist a dental hygienist, whereas an ELE can be operated hands free when a dental hygienist is performing ultrasonic scaling and other operations. PRACTICAL IMPLICATIONS: An ELE aids in the reduction of aerosols and spatters during ultrasonic scaling procedures, potentially reducing transmission of oral or respiratory pathogens like severe acute respiratory syndrome coronavirus 2. Position and airflow of the device are important to effective aerosol mitigation.


Assuntos
COVID-19 , Ultrassom , Aerossóis , Raspagem Dentária , Humanos , SARS-CoV-2
2.
Biomaterials ; 26(28): 5624-31, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15878367

RESUMO

The purpose of this study was to design a synthetic nanofibrillar matrix that more accurately models the porosity and fibrillar geometry of cell attachment surfaces in tissues. The synthetic nanofibrillar matrices are composed of nanofibers prepared by electrospinning a polymer solution of polyamide onto glass coverslips. Scanning electron and atomic force microscopy showed that the nanofibers were organized into fibrillar networks reminiscent of the architecture of basement membrane, a structurally compact form of the extracellular matrix (ECM). NIH 3T3 fibroblasts and normal rat kidney (NRK) cells, when grown on nanofibers in the presence of serum, displayed the morphology and characteristics of their counterparts in vivo. Breast epithelial cells underwent morphogenesis to form multicellular spheroids containing lumens. Hence the synthetic nanofibrillar matrix described herein provides a physically and chemically stable three-dimensional surface for ex vivo growth of cells. Nanofiber-based synthetic matrices could have considerable value for applications in tissue engineering, cell-based therapies, and studies of cell/tissue function and pathology.


Assuntos
Materiais Biomiméticos/química , Células Epiteliais/citologia , Matriz Extracelular/química , Rim/citologia , Nanoestruturas/química , Nylons/química , Engenharia Tecidual/métodos , Animais , Adesão Celular , Técnicas de Cultura de Células/métodos , Linhagem Celular , Tamanho Celular , Eletroquímica/métodos , Células Epiteliais/fisiologia , Rim/fisiologia , Teste de Materiais , Camundongos , Conformação Molecular , Morfogênese/fisiologia , Células NIH 3T3 , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA