Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7900): 271-275, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038718

RESUMO

In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1-3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. By contrast, supported palladium nanoparticles offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium, which gives enhanced activity to both reactions7,8,9; however, the electrochemical potential of the alloy is a compromise between that of the two metals, meaning that although the oxygen reduction can be improved in the alloy, the dehydrogenation activity is often limited. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts, we can almost double the reaction rate compared with that achieved with the corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium catalysts and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this catalytic effect-a cooperative redox enhancement-offers an approach to the design of multicomponent heterogeneous catalysts.


Assuntos
Ouro , Nanopartículas Metálicas , Álcoois , Ligas , Carbono , Catálise , Oxirredução , Oxigênio , Paládio
2.
Langmuir ; 40(27): 14086-14098, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38934738

RESUMO

Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.


Assuntos
Aldeídos , Peroxidase do Rábano Silvestre , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Aldeídos/química , Polímeros/química , Adsorção , Propriedades de Superfície , Enzimas Imobilizadas/química
3.
Am Nat ; 202(2): 192-215, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531278

RESUMO

AbstractMorphology often reflects ecology, enabling the prediction of ecological roles for taxa that lack direct observations, such as fossils. In comparative analyses, ecological traits, like diet, are often treated as categorical, which may aid prediction and simplify analyses but ignores the multivariate nature of ecological niches. Furthermore, methods for quantifying and predicting multivariate ecology remain rare. Here, we ranked the relative importance of 13 food items for a sample of 88 extant carnivoran mammals and then used Bayesian multilevel modeling to assess whether those rankings could be predicted from dental morphology and body size. Traditional diet categories fail to capture the true multivariate nature of carnivoran diets, but Bayesian regression models derived from living taxa have good predictive accuracy for importance ranks. Using our models to predict the importance of individual food items, the multivariate dietary niche, and the nearest extant analogs for a set of data-deficient extant and extinct carnivoran species confirms long-standing ideas for some taxa but yields new insights into the fundamental dietary niches of others. Our approach provides a promising alternative to traditional dietary classifications. Importantly, this approach need not be limited to diet but serves as a general framework for predicting multivariate ecology from phenotypic traits.


Assuntos
Ecossistema , Mamíferos , Animais , Teorema de Bayes , Dieta , Alimentos , Fósseis , Filogenia , Ecologia
4.
PLoS Pathog ; 15(1): e1007509, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657784

RESUMO

Many picornaviruses cause important diseases in humans and other animals including poliovirus, rhinoviruses (causing the common cold) and foot-and-mouth disease virus (FMDV). These small, non-enveloped viruses comprise a positive-stranded RNA genome (ca. 7-9 kb) enclosed within a protein shell composed of 60 copies of three or four different capsid proteins. For the aphthoviruses (e.g. FMDV) and cardioviruses, the capsid precursor, P1-2A, is cleaved by the 3C protease (3Cpro) to generate VP0, VP3 and VP1 plus 2A. For enteroviruses, e.g. poliovirus, the capsid precursor is P1 alone, which is cleaved by the 3CD protease to generate just VP0, VP3 and VP1. The sequences required for correct processing of the FMDV capsid protein precursor in mammalian cells were analyzed. Truncation of the P1-2A precursor from its C-terminus showed that loss of the 2A peptide (18 residues long) and 27 residues from the C-terminus of VP1 (211 residues long) resulted in a precursor that cannot be processed by 3Cpro although it still contained two unmodified internal cleavage sites (VP0/VP3 and VP3/VP1 junctions). Furthermore, introduction of small deletions within P1-2A identified residues 185-190 within VP1 as being required for 3Cpro-mediated processing and for optimal accumulation of the precursor. Within this C-terminal region of VP1, five of these residues (YCPRP), are very highly conserved in all FMDVs and are also conserved amongst other picornaviruses. Mutant FMDV P1-2A precursors with single amino acid substitutions within this motif were highly resistant to cleavage at internal junctions. Such substitutions also abrogated virus infectivity. These results can explain earlier observations that loss of the C-terminus (including the conserved motif) from the poliovirus capsid precursor conferred resistance to processing. Thus, this motif seems essential for maintaining the correct structure of picornavirus capsid precursors prior to processing and subsequent capsid assembly; it may represent a site that interacts with cellular chaperones.


Assuntos
Infecções por Picornaviridae/metabolismo , Picornaviridae/genética , Proteínas Estruturais Virais/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/genética , Substituição de Aminoácidos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Sequência Conservada , Picornaviridae/metabolismo , Infecções por Picornaviridae/genética , Precursores de Proteínas/genética , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo
5.
J Am Chem Soc ; 142(1): 290-299, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31801348

RESUMO

Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies. In this work, we provide new mechanistic insight into the assembly of an amphiphilic polymer-stabilized oil/aqueous interface, in which the headgroups consist of positively charged methylimidazolium ionic liquids, and the tails are short, monodisperse oligodimethylsiloxanes covalently attached to the headgroups. We demonstrate using vibrational sum frequency generation spectroscopy and pendant drop tensiometery that the composition of the bulk aqueous phase, particularly the ionic strength, dictates the kinetics and structures of the amphiphiles in the organic phase as they decorate the interface. These results show that H-bonding and electrostatic interactions taking place in the aqueous phase bias the grafted oligomer conformations that are adopted in the neighboring oil phase. The kinetics of self-assembly were ionic strength dependent and found to be surprisingly slow, being composed of distinct regimes where molecules adsorb and reorient on relatively fast time scales, but where conformational sampling and frustrated packing takes place over longer time scales. These results set the stage for understanding related chemical phenomena of bioinspired materials in diverse technological and fundamental scientific fields and provide a solid physical foundation on which to design new functional interfaces.


Assuntos
Lipídeos/química , Polímeros/química , Fenômenos Biofísicos , Ligação de Hidrogênio , Cinética , Estrutura Molecular , Concentração Osmolar , Eletricidade Estática , Tensão Superficial
6.
RNA ; 24(1): 12-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29042507

RESUMO

Foot-and-mouth disease virus (FMDV) has a positive-sense ssRNA genome including a single, large, open reading frame. Splitting of the encoded polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues long), which induces a nonproteolytic, cotranslational "cleavage" at its own C terminus. A conserved feature among variants of 2A is the C-terminal motif N16P17G18/P19, where P19 is the first residue of 2B. It has been shown previously that certain amino acid substitutions can be tolerated at residues E14, S15, and N16 within the 2A sequence of infectious FMDVs, but no variants at residues P17, G18, or P19 have been identified. In this study, using highly degenerate primers, we analyzed if any other residues can be present at each position of the NPG/P motif within infectious FMDV. No alternative forms of this motif were found to be encoded by rescued FMDVs after two, three, or four passages. However, surprisingly, a clear codon preference for the wt nucleotide sequence encoding the NPGP motif within these viruses was observed. Indeed, the codons selected to code for P17 and P19 within this motif were distinct; thus the synonymous codons are not equivalent.


Assuntos
Vírus da Febre Aftosa/química , Proteínas Virais/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Códon , Cricetinae , Vírus da Febre Aftosa/genética , Proteínas Virais/genética
7.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30867300

RESUMO

Infection by viruses depends on a balance between capsid stability and dynamics. This study investigated biologically and biotechnologically relevant aspects of the relationship in foot-and-mouth disease virus (FMDV) between capsid structure and thermostability and between thermostability and infectivity. In the FMDV capsid, a substantial number of amino acid side chains at the interfaces between pentameric subunits are charged at neutral pH. Here a mutational analysis revealed that the essential role for virus infection of most of the 8 tested charged groups is not related to substantial changes in capsid protein expression or processing or in capsid assembly or stability against a thermally induced dissociation into pentamers. However, the positively charged side chains of R2018 and H3141, located at the interpentamer interfaces close to the capsid 2-fold symmetry axes, were found to be critical both for virus infectivity and for keeping the capsid in a state of weak thermostability. A charge-restoring substitution (N2019H) that was repeatedly fixed during amplification of viral genomes carrying deleterious mutations reverted both the lethal and capsid-stabilizing effects of the substitution H3141A, leading to a double mutant virus with close to normal infectivity and thermolability. H3141A and other thermostabilizing substitutions had no detectable effect on capsid resistance to acid-induced dissociation into pentamers. The results suggest that FMDV infectivity requires limited local stability around the 2-fold axes at the interpentamer interfaces of the capsid. The implications for the mechanism of genome uncoating in FMDV and the development of thermostabilized vaccines against foot-and-mouth disease are discussed.IMPORTANCE This study provides novel insights into the little-known structural determinants of the balance between thermal stability and instability in the capsid of foot-and-mouth disease virus and into the relationship between capsid stability and virus infectivity. The results provide new guidelines for the development of thermostabilized empty capsid-based recombinant vaccines against foot-and-mouth disease, one of the economically most important animal diseases worldwide.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Vírus da Febre Aftosa/metabolismo , Substituição de Aminoácidos/genética , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Linhagem Celular , Análise Mutacional de DNA , Febre Aftosa/virologia , Vírus da Febre Aftosa/patogenicidade , Genoma Viral/genética , Temperatura Alta , Modelos Moleculares , Temperatura , Vírion/metabolismo
8.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29386286

RESUMO

Foot-and-mouth disease virus (FMDV) has a positive-sense single-stranded RNA (ssRNA) genome that includes a single, large open reading frame encoding a polyprotein. The cotranslational "cleavage" of this polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues in length) using a nonproteolytic mechanism termed "ribosome skipping" or "StopGo." Multiple variants of the 2A polypeptide with this property among the picornaviruses share a conserved C-terminal motif [D(V/I)E(S/T)NPG↓P]. The impact of 2A modifications within this motif on FMDV protein synthesis, polyprotein processing, and virus viability were investigated. Amino acid substitutions are tolerated at residues E14, S15, and N16 within the 2A sequences of infectious FMDVs despite their reported "cleavage" efficiencies at the 2A/2B junction of only ca. 30 to 50% compared to that of the wild type (wt). In contrast, no viruses containing substitutions at residue P17, G18, or P19, which displayed little or no "cleavage" activity in vitro, were rescued, but wt revertants were obtained. The 2A substitutions impaired the replication of an FMDV replicon. Using transient-expression assays, it was shown that certain amino acid substitutions at residues E14, S15, N16, and P19 resulted in partial "cleavage" of a protease-free polyprotein, indicating that these specific residues are not essential for cotranslational "cleavage." Immunofluorescence studies, using full-length FMDV RNA transcripts encoding mutant 2A peptides, indicated that the 2A peptide remained attached to adjacent proteins, presumably 2B. These results show that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity does not appear to be essential for the viability of FMDV.IMPORTANCE Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases of farm animals. Cotranslational "cleavage" of the FMDV polyprotein precursor at the 2A/2B junction, termed StopGo, is mediated by the short 2A peptide through a nonproteolytic mechanism which leads to release of the nascent protein and continued translation of the downstream sequence. Improved understanding of this process will not only give a better insight into how this peptide influences the FMDV replication cycle but may also assist the application of this sequence in biotechnology for the production of multiple proteins from a single mRNA. Our data show that single amino acid substitutions in the 2A peptide can have a major influence on viral protein synthesis, virus viability, and polyprotein processing. They also indicate that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity is not essential for the viability of FMDV.


Assuntos
Vírus da Febre Aftosa/fisiologia , Poliproteínas/metabolismo , Biossíntese de Proteínas , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Cricetinae , Mutação , Poliproteínas/genética , Processamento de Proteína Pós-Traducional , Proteínas Virais/genética
9.
Bioconjug Chem ; 30(11): 2771-2776, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31603664

RESUMO

We present a new methodology for the generation of discrete molecularly dispersed enzyme-polymer-surfactant bioconjugates. Significantly, we demonstrate that >3-fold increase in the catalytic efficiency of the diffusion-limited phosphotriesterase arPTE can be achieved through sequential electrostatic addition of cationic and anionic polymer surfactants, respectively. Here, the polymer surfactants assemble on the surface of the enzyme via ion exchange to yield a compact corona. The observed rate enhancement is consistent with a mechanism whereby the polymer-surfactant corona gives rise to a decrease in the dielectric constant in the vicinity of the active site of the enzyme, accelerating the rate-determining product diffusion step. The facile methodology has significant potential for increasing the efficiency of enzymes and could therefore have a substantially positive impact for industrial enzymology.


Assuntos
Agrobacterium tumefaciens/enzimologia , Hidrolases de Triester Fosfórico/metabolismo , Polímeros/química , Tensoativos/química , Cátions , Hidrolases de Triester Fosfórico/química , Conformação Proteica , Eletricidade Estática
10.
BMC Oral Health ; 19(1): 242, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711475

RESUMO

BACKGROUND: Dental age estimation can assist in the identification of victims following natural disasters and it can also help to solve birth date disputes in individuals involved in criminal activities. A reference dataset (RDS) has been developed from the dental development of 2306 subjects of southern Han Chinese origin and subsequently validated. This study aimed to test the applicability of the southern Han Chinese dental maturation RDS on three distinct East Asian population groups. METHODS: A total of 953 dental panoramic radiographs of subjects aged 2 to 24 years were obtained from Philippines, Thailand and Japan. The staging of dental development was conducted according to Anglo-Canadian classification system. The dental age (DA) was calculated using six methods; one un-weighted average and five weighted average (n-tds, sd-tds, se-tds, 1/sd-tds, 1/se-tds) methods based on the scores of the southern Han Chinese RDS. Statistical significance was set at p < 0.05 and the variation between chronological age (CA) and DA was evaluated using paired t-test and Bland & Altman scatter plots. RESULTS: From six dental age calculations, all methods of DA accurately estimated the age of Japanese and few methods in Filipino subjects (n-tds, 1/sd-tds, 1/se-tds). There was consistent overestimation of age for all the methods for Thai females (p < 0.05). CONCLUSIONS: The southern Han Chinese dental reference dataset was shown to be most accurate for Japanese, followed by Thai males and it was particularly ineffective for Filipinos and Thai females.


Assuntos
Determinação da Idade pelos Dentes , Povo Asiático , Adolescente , Adulto , Criança , Pré-Escolar , China , Feminino , Humanos , Japão , Masculino , Filipinas , Valores de Referência , Tailândia , Adulto Jovem
11.
BMC Med Imaging ; 18(1): 5, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703180

RESUMO

BACKGROUND: The accuracy of estimated age should depend on the reference data sets (RDS) from which the maturity scores or Ages of Attainment (AoA) were obtained. This study aimed to test the accuracy of age estimation from three different population specific dental reference datasets (RDS). METHODS: Two hundred and sixty six dental panoramic radiographs of subjects belonging to southern Chinese ethnicity were scored and dental age (DA) was estimated from three reference datasets: French-Canadian, United Kingdom (UK) Caucasian and southern Chinese. Statistical significance was set at p < 0.05 and for each method, the difference between the chronological age (CA) and dental age (CA-DA) was calculated using paired t-tests. In addition, Chi-square tests were performed to evaluate the accuracy of the age estimates within specific time interval from CA. RESULTS: The estimated age difference (CA-DA) using the French Canadian RDS was - 0.62 years for males and - 0.36 years for females. For the UK Caucasian RDS, the age difference was 0.25 years for males and 0.23 years for females. The difference observed using the southern Chinese RDS was - 0.02 years for both genders and the difference was not statistically significant (p > 0.05). The southern Chinese RDS estimated the age of 80% of subjects within ±12 months range, and 90% of subjects within ±18 months range (p < 0.05) showing it to be more accurate than other datasets. CONCLUSION: It is concluded that population specific Reference Data Sets improve the accuracy of dental age estimation.


Assuntos
Determinação da Idade pelos Dentes/métodos , Radiografia Dentária Digital/métodos , Radiografia Panorâmica/métodos , Dente/crescimento & desenvolvimento , Adolescente , Povo Asiático/estatística & dados numéricos , Canadá/etnologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Dente/diagnóstico por imagem , Reino Unido/etnologia , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 112(16): 4897-902, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25901311

RESUMO

A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.


Assuntos
Adaptação Biológica , Evolução Biológica , Canidae/genética , Fósseis , Variação Genética , Característica Quantitativa Herdável , Animais , Teorema de Bayes , Calibragem , Dieta , Fatores de Tempo
13.
J Gen Virol ; 98(4): 671-680, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28452293

RESUMO

Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.


Assuntos
Endopeptidases/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/fisiologia , Proteínas Mutantes/metabolismo , Proteólise , Animais , Bovinos , Células Cultivadas , Cricetinae , Análise Mutacional de DNA , Endopeptidases/genética , Vírus da Febre Aftosa/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética
14.
J Gen Virol ; 98(3): 385-395, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27902359

RESUMO

The foot-and-mouth disease virus (FMDV) capsid precursor, P1-2A, is cleaved by FMDV 3C protease to yield VP0, VP3, VP1 and 2A. Cleavage of the VP1/2A junction is the slowest. Serotype O FMDVs with uncleaved VP1-2A (having a K210E substitution in VP1; at position P2 in cleavage site) have been described previously and acquired a second site substitution (VP1 E83K) during virus rescue. Furthermore, introduction of the VP1 E83K substitution alone generated a second site change at the VP1/2A junction (2A L2P, position P2' in cleavage site). These virus adaptations have now been analysed using next-generation sequencing to determine sub-consensus level changes in the virus; this revealed other variants within the E83K mutant virus population that changed residue VP1 K210. The construction of serotype A viruses with a blocked VP1/2A cleavage site (containing K210E) has now been achieved. A collection of alternative amino acid substitutions was made at this site, and the properties of the mutant viruses were determined. Only the presence of a positively charged residue at position P2 in the cleavage site permitted efficient cleavage of the VP1/2A junction, consistent with analyses of diverse FMDV genome sequences. Interestingly, in contrast to the serotype O virus results, no second site mutations occurred within the VP1 coding region of serotype A viruses with the blocked VP1/2A cleavage site. However, some of these viruses acquired changes in the 2C protein that is involved in enterovirus morphogenesis. These results have implications for the testing of potential antiviral agents targeting the FMDV 3C protease.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/metabolismo , Febre Aftosa/virologia , Proteínas Virais/metabolismo , Proteases Virais 3C , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/genética , Avaliação Pré-Clínica de Medicamentos , Vírus da Febre Aftosa/efeitos dos fármacos , Vírus da Febre Aftosa/genética , Ácido Glutâmico/genética , Lisina/genética , Mutação , Montagem de Vírus/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-28150219

RESUMO

Honey bees secrete a queen mandibular pheromone that renders workers reproductively altruistic and drones sexually attentive. This sex-specific function of QMP may have evolved from a sexually dimorphic signaling mechanism derived from pre-social ancestors. If so, there is potential for pre-social insects to respond to QMP, and in a manner that is comparable to its normal effect on workers and drones. Remarkably, QMP applied to female Drosophila does induce worker-like qualities [Camiletti et al. (Entomol Exp Appl 147:262, 2013)], and we here extend this comparison to examine the effects of bee pheromone on male fruit flies. We find that male Drosophila melanogaster consistently orient towards a source of queen pheromone in a T-maze, suggesting a recruitment response comparable to the pheromone's normal effect on drones. Moreover, exposure to QMP renders male flies more sexually attentive; they display intensified pre-copulatory behavior towards conspecific females. We can inhibit this sexual effect through a loss-of-olfactory-function mutation, which suggests that the pheromone-responsive behavioral mechanism is olfactory-driven. These pheromone-induced changes to male Drosophila behavior suggest that aspects of sexual signaling are conserved between these two distantly related taxa. Our results highlight a role for Drosophila as a genetically tractable pre-social model for studies of social insect biology.


Assuntos
Abelhas/genética , Drosophila melanogaster/genética , Feromônios/genética , Comportamento Sexual Animal/fisiologia , Olfato/genética , Animais , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Feromônios/administração & dosagem , Comportamento Sexual Animal/efeitos dos fármacos , Olfato/efeitos dos fármacos , Comportamento Social , Especificidade da Espécie
16.
Langmuir ; 33(15): 3672-3679, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28350169

RESUMO

Patterned poly(oligo ethylene glycol) methyl ether methacrylate (POEGMEMA) brush structures may be formed by using a combination of atom-transfer radical polymerization (ATRP) and UV photopatterning. UV photolysis is used to selectively dechlorinate films of 4-(chloromethyl)phenyltrichlorosilane (CMPTS) adsorbed on silica surfaces, by exposure either through a mask or using a two-beam interferometer. Exposure through a mask yields patterns of carboxylic acid-terminated adsorbates. POEGMEMA may be grown from intact Cl initiators that were masked during exposure. Corrals, traps, and other structures formed in this way enable the patterning of proteins, vesicles, and, following vesicle rupture, supported lipid bilayers (SLBs). Bilayers adsorbed on the carboxylic acid-terminated surfaces formed by C-Cl bond photolysis in CMPTS exhibit high mobility. SLBs do not form on POEGMEMA. Using traps consisting of carboxylic acid-functionalized regions enclosed by POEGMEMA structures, electrophoresis may be observed in lipid bilayers containing a small amount of a fluorescent dye. Segregation of dye at one end of the traps was measured by fluorescence microscopy. The increase in the fluorescence intensity was found to be proportional to the trap length, while the time taken to reach the maximum value was inversely proportional to the trap length, indicating uniform, rapid diffusion in all of the traps. Nanostructured materials were formed using interferometric lithography. Channels were defined by exposure of CMPTS films to maxima in the interferogram, and POEGMEMA walls were formed by ATRP. As for the micrometer-scale patterns, bilayers did not form on the POEGMEMA structures, and high lipid mobilities were measured in the polymer-free regions of the channels.


Assuntos
Nanoestruturas , Bicamadas Lipídicas , Metacrilatos , Polimerização , Polímeros , Propriedades de Superfície
17.
Langmuir ; 33(35): 8829-8837, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28551995

RESUMO

We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, it is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy.


Assuntos
Nanotecnologia , Adsorção , Microscopia de Força Atômica , Proteínas , Siloxanas
18.
Langmuir ; 32(7): 1818-27, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26820378

RESUMO

The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni(2+), this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scale patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. This simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces.


Assuntos
Histidina/química , Proteínas Imobilizadas/química , Microtecnologia , Nanoestruturas/química , Processos Fotoquímicos , Siloxanas/química , Sítios de Ligação , Ácido Nitrilotriacético/química
19.
BMC Vet Res ; 12: 5, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739166

RESUMO

BACKGROUND: Foot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used. Various aspects of the maintenance and circulation of FMD viruses (FMDV) in Uganda are not well understood; these include the role of the African buffalo (Syncerus caffer) as a reservoir for FMDV. To better understand the epidemiology of FMD at the livestock-wildlife-interface, samples were collected from young, unvaccinated cattle from 24 pastoral herds that closely interact with wildlife around Queen Elizabeth National Park in Uganda, and analysed for evidence of FMDV infection. RESULTS: In total, 37 (15%) of 247 serum samples had detectable antibodies against FMDV non-structural proteins (NSPs) using a pan-serotypic assay. Within these 37 sera, antibody titres ≥ 80 against the structural proteins of serotypes O, SAT 1, SAT 2 and SAT 3 were detected by ELISA in 5, 7, 4 and 3 samples, respectively, while neutralizing antibodies were only detected against serotype O in 3 samples. Two FMDV isolates, with identical VP1 coding sequences, were obtained from probang samples from clinically healthy calves from the same herd and are serotype SAT 1 (topotype IV (EA-I)). Based on the VP1 coding sequences, these viruses are distinct from previous cattle and buffalo SAT 1 FMDV isolates obtained from the same area (19-30% nucleotide difference) and from the vaccine strain (TAN/155/71) used within Uganda (26% nucleotide difference). Eight herds had only one or a few animals with antibodies against FMDV NSPs while six herds had more substantial evidence of prior infection with FMDV. There was no evidence for exposure to FMDV in the other ten herds. CONCLUSIONS: The two identical SAT 1 FMDV VP1 sequences are distinct from former buffalo and cattle isolates from the same area, thus, transmission between buffalo and cattle was not demonstrated. These new SAT 1 FMDV isolates differed significantly from the vaccine strain used to control Ugandan FMD outbreaks, indicating a need for vaccine matching studies. Only six herds had clear serological evidence for exposure to O and SAT 1 FMDV. Scattered presence of antibodies against FMDV in other herds may be due to the occasional introduction of animals to the area or maternal antibodies from past infection and/or vaccination. The evidence for asymptomatic FMDV infection has implications for disease control strategies in the area since this obstructs early disease detection that is based on clinical signs in FMDV infected animals.


Assuntos
Bovinos/virologia , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/virologia , Sequência de Aminoácidos , Animais , Animais Selvagens/virologia , Anticorpos Antivirais/análise , Líquidos Corporais/virologia , Búfalos/virologia , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/imunologia , Dados de Sequência Molecular , Parques Recreativos , RNA Viral/análise , Alinhamento de Sequência , Uganda/epidemiologia
20.
Proc Natl Acad Sci U S A ; 110(39): 15734-9, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24019487

RESUMO

Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.


Assuntos
Biopolímeros/análise , Carboidratos/análise , Camada de Gelo/química , Regiões Antárticas , Regiões Árticas , Modelos Químicos , Peso Molecular , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA