RESUMO
A variety of natural polymers and proteins are considered to be 3D cell culture structures able to mimic the extracellular matrix (ECM) to promote bone tissue regeneration. Pectin, a natural polysaccharide extracted from the plant cell walls and having a chemical structure similar to alginate, provides interesting properties as artificial ECM. In this work, for the first time, pectin, modified with an RGD-containing oligopeptide or not, is used as an ECM alternative to immobilize cells for bone tissue regeneration. The viability, metabolic activity, morphology, and osteogenic differentiation of immobilized MC3T3-E1 preosteoblats demonstrate the potential of this polysaccharide to keep immobilized cells viable and differentiating. Preosteoblasts immobilized in both types of pectin microspheres maintained a constant viability up to 29 days and were able to differentiate. The grafting of the RGD peptide on pectin backbone induced improved cell adhesion and proliferation within the microspheres. Furthermore, not only did cells grow inside but also they were able to spread out from the microspheres and to organize themselves in 3D structures producing a mineralized extracellular matrix. These promising results suggest that pectin can be proposed as an injectable cell vehicle for bone tissue regeneration.
Assuntos
Osso e Ossos , Pectinas/uso terapêutico , Engenharia Tecidual/métodos , Células 3T3 , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Regeneração Óssea , Adesão Celular , Proliferação de Células , Microscopia Crioeletrônica , Injeções , Camundongos , Microscopia Eletrônica de Varredura , Microesferas , OligopeptídeosRESUMO
The proliferation of cultured human bone marrow stromal cells (HBMSC) on regenerated cellulose hydrogels was assessed. Regenerated cellulose hydrogels showed good rates of HBMSC proliferation, the cells exhibiting a flattened morphology, and after 22 days in culture, the cells had homogeneously colonized the surface of the materials. Moreover, since the early days in culture, between the surface of the materials and attached cells a continuous granulated hydroxyapatite layer was formed. It has been previously demonstrated in vitro, but without cells, that these materials did not mineralize. Hence, it seems that HBMSC promoted the mineralization of the surface.
Assuntos
Células da Medula Óssea/citologia , Calcificação Fisiológica , Celulose/metabolismo , Hidrogéis/metabolismo , Regeneração , Células Estromais/metabolismo , Fosfatos de Cálcio/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Células Estromais/ultraestruturaRESUMO
Femoral implantation of regenerated cellulose hydrogels revealed their biocompatibility, but a complete osseointegration could not be observed. Phosphorylation was therefore envisaged as the means to enhance cellulose bioactivity. In vitro studies showed that regenerated cellulose hydrogels promote bone cells attachment and proliferation but do not mineralize in acellular simulated physiological conditions. On the contrary, phosphorylated cellulose has shown an opposite behavior, by inducing the formation of a calcium phosphate layer in simulated physiological conditions, but behaving as a poor substrate for bone cells attachment and proliferation. In order to investigate the in vivo behavior of these materials, and assess the influence of mineralization induction ability vs. bone cells compatibility, unmodified and phosphorylated cellulose hydrogels were implanted in rabbits for a maximum period of 6 months and bone regeneration was investigated. Despite the difficulties arising from the retraction of cellulose hydrogels upon dehydration during the preparation of retrieved implants, histological observations showed no inflammatory response after implantation, with bone intra-spongious regeneration of cells and the integration of the unmodified as well as the phosphorylated cellulose implants. After a maximum implantation period of 6 months, histological observations, histomorphometry and the measurement of the amount of 45Ca incorporated in the surrounding tissue indicated a slightly better osseointegration of phosphorylated cellulose, although no significant differences between the two materials were found.