Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(7): e2201421120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745809

RESUMO

It is axiomatic that knowledge of the diets of extinct hominin species is central to any understanding of their ecology and our evolution. The importance of diet in the paleontological realm has led to the employment of multiple approaches in its elucidation. Some of these have deep historical roots, while others are dependent upon more recent technical and methodological advances. Historically, studies of tooth size, shape, and structure have been the gold standard for reconstructing diet. They focus on species-level adaptations, and as such, they can set theoretical brackets for dietary capabilities within the context of specific evolutionary moments. Other methods (e.g., analyses of dental calculus, biogeochemistry, and dental microwear) have only been developed within the past few decades, but are now beginning to yield evidence of the actual foods consumed by individuals represented by fossil remains. Here we begin by looking at these more "direct" forms of evidence of diet before showing that, when used in conjunction with other techniques, these "multi-proxy" approaches can raise questions about traditional interpretations of early hominin diets and change the nature of paleobiological interpretations.


Assuntos
Hominidae , Humanos , Animais , Dieta , Ecologia , Alimentos , Adaptação Fisiológica , Fósseis
2.
J Hum Evol ; 188: 103481, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38382132

RESUMO

Since the initial discovery of Paranthropus robustus at the site of Kromdraai in 1938, the hypodigm of this species has been expanded by subsequent work at the localities of Swartkrans and Drimolen, with a few fossils also known from Cooper's D, Gondolin and Sterkfontein Member 5. Beginning in 2014, systematic excavations at Kromdraai uncovered a large and previously unknown fossiliferous area, shedding light on Units O and P in the earliest part of the site's stratigraphic sequence. The aim of this paper is to provide detailed descriptions and illustrations of 30 P. robustus craniodental specimens recovered between 2014 and 2017 within the Unit P deposits at Kromdraai. This new sample predates all prior conspecific specimens found at this site (including the holotype of P. robustus from Kromdraai, TM 1517). Its basic dental morphology dimensions and cranial features are compared in a preliminary analysis with other P. robustus samples. The P. robustus sample from Kromdraai Unit P documents previously unknown portions of the P. robustus juvenile cranium. The new dental and cranial remains aid in the exploration of potential morphological distinctions between site-specific P. robustus samples and are compared favorably in size and morphology with the small P. robustus specimens from Drimolen (e.g., DNH 7). These findings do not support the hypothesis that the specimens from Drimolen belong to a different taxonomic group. Instead, they reinforce the presence of a significant degree of sexual dimorphism within P. robustus. The Kromdraai Unit P specimens also contribute to the biodemographic profile of P. robustus. The notable prevalence of infants (i.e., juvenile individuals before the emergence of their first permanent molars) mirrors the natural mortality profiles observed in wild chimpanzees. This suggests a closer resemblance in the processes of accumulation in Kromdraai Unit P and Drimolen than at Swartkrans.


Assuntos
Fósseis , Hominidae , Humanos , Animais , Hominidae/anatomia & histologia , África do Sul , Dente Molar/anatomia & histologia , Pan troglodytes
3.
J Hum Evol ; 184: 103426, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769373

RESUMO

Paranthropus boisei is well represented in the eastern African fossil record by craniodental remains, but very few postcranial fossils can be securely attributed to this taxon. For this reason, KNM-ER 1500 from East Turkana, Kenya, is especially important. KNM-ER 1500 is a badly weathered and fragmented postcranial skeleton associated with a small piece of mandibular corpus. It derives from the Burgi Member, which has yielded diagnostic craniodental fossils attributable to P. boisei, Homo habilis, Homo rudolfensis and Homo erectus. Although it has been proposed that KNM-ER 1500 may be attributable to P. boisei based on the small mandibular fragment, this hypothesis remained challenging to test. Here we re-examine the preserved portions of KNM-ER 1500 and reassess support for its taxonomic attribution. There are compelling features of the mandible, proximal femur, and especially the proximal radius that support attribution of KNM-ER 1500 to P. boisei. These features include the absolute width of the mandible and its lack of a lateral intertoral sulcus, an anteroposteriorly compressed femoral neck with a distinctive posteroinferior marginal ridge, the rim of the radial head that is proximodistally uniform in thickness around its circumference, and a long radial neck that is elliptical in cross section. No feature serves to align KNM-ER 1500 with Homo to the exclusion of Paranthropus. KNM-ER 1500 was a small-bodied individual and attributing this specimen to P. boisei confirms that significant postcranial-size dimorphism was present in this species.

4.
J Hum Evol ; 161: 103079, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34739985

RESUMO

The morphology and variability of the Middle Stone Age (MSA) hominin fossils from Klasies River Main Site have been the focus of investigation for more than four decades. The mandibular remains have figured prominently in discussions relating to robusticity, size dimorphism, and symphyseal morphology. Variation in corpus size between the robust SAM-AP 6223 and the diminutive SAM-AP 6225 mandibles is particularly impressive, and the difference between the buccolingual diameters of their M2s significantly exceeds recent human sample variation. SAM-AP 6223 and SAM-AP 6225 are the only Klasies specimens with homologous teeth (M2 and M3) that permit comparisons of crown morphology. While the differences in dental trait expression at the outer enamel surfaces of these molars are slight, diffeomorphic surface analyses of their underlying enamel-dentine junction (EDJ) topographies reveal differences that are well beyond the means of pairwise differences among comparative samples of Later Stone Age (LSA) Khoesan and recent African homologues. The EDJs of both SAM-AP 6225 molars and the SAM-AP 6223 M3 fall outside the envelopes that define the morphospace of these two samples. Although the radiocarbon dated LSA individuals examined here differ by a maximum of some 7000 years, and the two Klasies jaws may differ by perhaps as much as 18,000 years, it is difficult to ascribe their differences to time alone. With reference to the morphoscopic traits by which the SAM-AP 6223 and SAM-AP 6225 EDJs differ, the most striking is the expression of the protoconid cingulum. This is very weakly developed on the SAM-AP 6223 molars and distinct in SAM-AP 6225. As such, this diminutive fossil exhibits a more pronounced manifestation of what is likely a plesiomorphic feature, thus adding to the morphological mosaicism that is evident in the Klasies hominin assemblage. Several possible explanations for the variation and mosaicism in this MSA sample are discussed.


Assuntos
Hominidae , Rios , Animais , Esmalte Dentário , Dentina , Fósseis , Humanos , Dente Molar
5.
J Hum Evol ; 130: 21-35, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010541

RESUMO

Morphometric assessments of the dentition have played significant roles in hypotheses relating to taxonomic diversity among extinct hominins. In this regard, emphasis has been placed on the statistical appraisal of intraspecific variation to identify morphological criteria that convey maximum discriminatory power. Three-dimensional geometric morphometric (3D GM) approaches that utilize landmarks and semi-landmarks to quantify shape variation have enjoyed increasingly popular use over the past twenty-five years in assessments of the outer enamel surface (OES) and enamel-dentine junction (EDJ) of fossil molars. Recently developed diffeomorphic surface matching (DSM) methods that model the deformation between shapes have drastically reduced if not altogether eliminated potential methodological inconsistencies associated with the a priori identification of landmarks and delineation of semi-landmarks. As such, DSM has the potential to better capture the geometric details that describe tooth shape by accounting for both homologous and non-homologous (i.e., discrete) features, and permitting the statistical determination of geometric correspondence. We compare the discriminatory power of 3D GM and DSM in the evaluation of the OES and EDJ of mandibular permanent molars attributed to Australopithecus africanus, Paranthropus robustus and early Homo sp. from the sites of Sterkfontein and Swartkrans. For all three molars, classification and clustering scores demonstrate that DSM performs better at separating the A. africanus and P. robustus samples than does 3D GM. The EDJ provided the best results. P. robustus evinces greater morphological variability than A. africanus. The DSM assessment of the early Homo molar from Swartkrans reveals its distinctiveness from either australopith sample, and the "unknown" specimen from Sterkfontein (Stw 151) is notably more similar to Homo than to A. africanus.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Paleodontologia/métodos , Animais , Mandíbula/anatomia & histologia , Paleodontologia/instrumentação , África do Sul
6.
J Hum Evol ; 131: 152-175, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182200

RESUMO

The KNM-ER 64060 dentition derives from a horizon that most likely dates to between 2.02 and 2.03 Ma. A proximate series of postcranial bones (designated KNM-ER 64061) derives from the same siltstone unit and may be associated with the dentition, but their separation on the surface of the site leaves some room for doubt. KNM-ER 64060 is one of fewer than ten hominin specimens from the Early Pleistocene of East Africa that comprises a full or nearly complete mandibular dentition. Its taxonomic attribution is potentially significant, especially if the postcranial elements are related. At least three, and probably four hominin species, including Paranthropus boisei and Homo erectus (= H. ergaster), are known at about this time in East Africa. Other penecontemporaneous fossils have been referred to a single, highly variable species, H. habilis, or two taxa, namely H. habilis and H. rudolfensis. Although the weight of evidence supports the attribution of these specimens to two species, there is notable lack of agreement over the assignation of individual fossils. We take a conservative approach and group all such specimens under the designation "early Homo sp." for comparative purposes. KNM-ER 64060 is clearly attributable to Homo rather than Paranthropus. The preponderance of the evidence suggests that the affinities of KNM-ER 64060 are with fossils assigned to the early Homo sp. category rather than with H. erectus. This is indicated by the overall sizes of the KNM-ER 64060 canine, premolar and molar crowns, the size relationships of the P3 to P4, the relative narrowness of its premolar crowns, the cusp proportions of the M1 and especially those of the M2 and M3, and seemingly the possession of a two-rooted P4. Some of these comparisons suggest further that among the fossils comprising the early Homo sp. sample, the KNM-ER 64060 dentition exhibits greater overall similarity to specimens such as OH 7 and OH 16 that represent Homo habilis sensu stricto.


Assuntos
Dentição Permanente , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Mandíbula , Dente/anatomia & histologia , Animais , Quênia
7.
J Hum Evol ; 119: 42-63, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29685753

RESUMO

The importance of diet in primate ecology has motivated the use of a variety of methods to reconstruct dietary habits of extinct hominin taxa. Dental microwear is one such approach that preserves evidence from consumed food items. This study is based on 44 specimens of Australopithecus africanus from Makapansgat and Sterkfontein, and 66 specimens of Paranthropus robustus from Swartkrans, Kromdraai and Drimolen. These samples enable examination of potential differences between the two assemblages of A. africanus, and among the various assemblages of P. robustus in relation to the paleoenvironmental reconstructions that have been proffered for each fossil site. Sixteen microwear texture variables were recorded for each specimen from digital elevation models generated using a white-light confocal profiler. Only two of these differ significantly between the Makapansgat and Sterkfontein samples of A. africanus. None of the microwear texture variables differs significantly among the samples of P. robustus. On the other hand, P. robustus has significantly higher values than A. africanus for 11 variables related to feature complexity, size, and depth; P. robustus exhibits rougher surfaces that comprise larger, deeper features. In contrast, A. africanus has smoother, simpler wear surfaces with smaller, shallower and more anisotropic features. As for possible habitat differences among the various sites, only a relatively small number of subtle differences are evident between the specimens of A. africanus from Makapansgat and Sterkfontein, and there are none among the specimens of P. robustus from various deposits. As such, it is reasonable to conclude that, while subtle differences in microwear textures may reflect differences in background habitats, the wear fabric differences between P. robustus and A. africanus are most reasonably interpreted as having been driven by dietary differences.


Assuntos
Dieta , Meio Ambiente , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Hominidae/fisiologia , Paleodontologia , África do Sul
8.
J Hum Evol ; 103: 53-78, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166908

RESUMO

The paleoanthropological significance of Klasies River Main Site derives from its abundant Middle Stone Age (MSA) archaeological debris and the hominin fossils that have featured in discussions about modern human emergence. Despite their significance, the human remains have yet to be contextualized within the spatial, stratigraphic and geochronological framework of the site. We provide an updated overview of the stratigraphy and geochronology of the site, and review the human fossil record in this context. We also provide the first anatomical interpretations of many of the cranial vault fragments. Five hominin specimens derive from the Upper Member and six from the lowermost LBS Member. The vast majority - nearly 40 cataloged specimens - come from the SAS Member; many of these are from a single stratigraphic horizon in a relatively small area in Cave 1. There is a strong cranial bias to the sample; just over 70% of skeletal remains are from the skull. The postcranial skeleton is poorly represented. Excluding the three metatarsals, there are only three long bones in the sample - a clavicle, a proximal radius, and a proximal ulna. Remarkably, humeral, femoral and tibial diaphyses, which are the most durable elements in terms of cortical bone thickness and density, are absent. However, the proportional representation of hominin remains is reminiscent of the "Klasies Pattern" shown by the MSA large bovid skeletal parts. To some degree, this may reflect the excavation and recovery methods that were employed. The vast bulk of the human fossils represent adults. Only three undoubted juvenile individuals are represented - each by a deciduous tooth. This contrasts with other MSA sites along the southern coast of South Africa, where human remains are predominantly juvenile, usually in the form of (possibly exfoliated) deciduous teeth. However, this apparent dissimilarity may also reflect different excavation techniques.


Assuntos
Fósseis/anatomia & histologia , Ossos do Metatarso/anatomia & histologia , Crânio/anatomia & histologia , Adulto , Arqueologia , Cavernas , Humanos , Rios , África do Sul , Dente Decíduo
9.
Proc Natl Acad Sci U S A ; 110(26): 10501-6, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23733966

RESUMO

Hominin fossil evidence in the Turkana Basin in Kenya from ca. 4.1 to 1.4 Ma samples two archaic early hominin genera and records some of the early evolutionary history of Paranthropus and Homo. Stable carbon isotopes in fossil tooth enamel are used to estimate the fraction of diet derived from C3 or C4 resources in these hominin taxa. The earliest hominin species in the Turkana Basin, Australopithecus anamensis, derived nearly all of its diet from C3 resources. Subsequently, by ca. 3.3 Ma, the later Kenyanthropus platyops had a very wide dietary range--from virtually a purely C3 resource-based diet to one dominated by C4 resources. By ca. 2 Ma, hominins in the Turkana Basin had split into two distinct groups: specimens attributable to the genus Homo provide evidence for a diet with a ca. 65/35 ratio of C3- to C4-based resources, whereas P. boisei had a higher fraction of C4-based diet (ca. 25/75 ratio). Homo sp. increased the fraction of C4-based resources in the diet through ca. 1.5 Ma, whereas P. boisei maintained its high dependency on C4-derived resources.


Assuntos
Dieta/história , Hominidae , Animais , Isótopos de Carbono , Esmalte Dentário/química , Fósseis , História Antiga , Humanos , Quênia
10.
J Hum Evol ; 85: 126-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26094041

RESUMO

Microbiological degradation is one of the most important factors responsible for the destruction of bone in archaeological contexts. Microscopic focal destruction (MFD) is the most prevalent form of microbial tunneling and is encountered very commonly in human bones from archaeological sites, whereas animal bones from these same sites show significantly better preservation if they were deposited in a fragmentary (e.g., butchered) state. Similarly, most fossils show either no evidence or only minor traces of bacterial osteolysis. These observations and experimental evidence point to an endogenous origin for osteolytic bacteria, suggesting that bone bioerosion could potentially aid in reconstructing early taphonomic events. We here report extensive MFD in the mandibular corpus of a small (presumptive female) individual of the hominin Paranthropus robustus from the Early Pleistocene site of Swartkrans, South Africa. The specimen (SKX 5013) derives in situ from the Member 2 deposit, which is dated to ca. 1.5-1.0 Ma. Examination of sections from the corpus by backscattered electron microscopy reveals numerous small linear longitudinal and budded tunneling cavities, which tend to be concentrated around Haversian canals and are more abundant closer to the endosteal aspect of the section. The taphonomy of Swartkrans has been the subject of intense investigation, and given the possibility that different agents of accumulation may have been responsible for the faunal and hominin fossils in the different members at the site, the observation that a specimen of P. robustus from Member 2 displays significant microbial osteolysis is of potential interest. A study of the prevalence of this process in adequately large samples of the animal bones from these units may yield novel insights and provide refinement of our understanding of their taphonomic histories. Such observations might well reveal differences among the various members that could provide another valuable source of osteoarchaeological information for the site.


Assuntos
Fósseis , Mandíbula/patologia , Osteólise/microbiologia , Animais , Arqueologia , Hominidae , África do Sul
11.
Am J Phys Anthropol ; 157(4): 666-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25845703

RESUMO

OBJECTIVES: Among the ten fossil hominid deciduous teeth reported so far from the Pleistocene sediments of the Sangiran Dome of Java are two isolated lower second molars: specimens PCG.2 from the Kabuh Formation and FS-72 from the Pucangan Formation. While PCG.2 appears to be certainly attributable to Homo erectus, FS-72 is somewhat more problematic, even though it is commonly listed within the Indonesian H. erectus hypodigm. Largely because of its large size, it was originally attributed to Meganthropus paleojavanicus. Subsequent study highlighted a set of metric and nonmetric crown features also found in Australopith and African early Homo (notably H. habilis) homologues. An additional problem with the taxonomic assignment of isolated teeth from the Pleistocene of Java is the presence of Pongo in these same deposits. METHODS: To assess the taxonomic affinity of FS-72, we investigated its inner structure (tissue proportions and enamel-dentine junction morphology) by using techniques of 2-3D virtual imaging coupled with geometric morphometric analyses. RESULTS: The results show that FS-72 has thinner enamel compared to fossil and recent humans and that its topographic repartition more closely follows the pongine pattern. It also exhibits a Pongo-like elongated morphology of the enamel-dentine junction, with proportionally lower and mesiodistally spaced dentine horns. CONCLUSIONS: Given the morphological and metric similarities between fossil orangutan and H. erectus molars, we tested the hypothesis that its internal morphology more closely resembles the patterns evinced by PCG.2 and modern humans than Pongo. Accordingly, we consider that FS-72 more likely represents a dm2 of Pongo rather than Homo.


Assuntos
Hominidae/anatomia & histologia , Hominidae/classificação , Dente Molar/anatomia & histologia , Animais , Esmalte Dentário/anatomia & histologia , Fósseis , Humanos , Imageamento Tridimensional , Indonésia , Paleodontologia , Pongo/anatomia & histologia
12.
Proc Natl Acad Sci U S A ; 108(23): 9337-41, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21536914

RESUMO

The East African hominin Paranthropus boisei was characterized by a suite of craniodental features that have been widely interpreted as adaptations to a diet that consisted of hard objects that required powerful peak masticatory loads. These morphological adaptations represent the culmination of an evolutionary trend that began in earlier taxa such as Australopithecus afarensis, and presumably facilitated utilization of open habitats in the Plio-Pleistocene. Here, we use stable isotopes to show that P. boisei had a diet that was dominated by C(4) biomass such as grasses or sedges. Its diet included more C(4) biomass than any other hominin studied to date, including its congener Paranthropus robustus from South Africa. These results, coupled with recent evidence from dental microwear, may indicate that the remarkable craniodental morphology of this taxon represents an adaptation for processing large quantities of low-quality vegetation rather than hard objects.


Assuntos
Evolução Biológica , Dieta , Dente/anatomia & histologia , Adaptação Fisiológica , Animais , Isótopos de Carbono/análise , Cyperus , Preferências Alimentares , Fósseis , Hominidae , Humanos , Quênia , Isótopos de Oxigênio/análise , Poaceae , Datação Radiométrica/métodos
13.
J Hum Evol ; 65(3): 282-93, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23850295

RESUMO

The mandibular third premolar (P3) of Australopithecus afarensis is notable for extensive morphological variability (e.g., metaconid presence/absence, closure of the anterior fovea, root number) and temporal trends in crown length and shape change over its 700 Ka time range. Hominins preceding A. afarensis have unicuspid, mesiodistally elongated P3s with smaller talonids, and subsequent australopiths have bicuspid, more symmetrically-shaped P3 crowns with expanded talonids. For these features, A. afarensis is intermediate and, thus, evinces the incipient stages of P3 molarization. Here, we examine A. afarensis P3 Phase II microwear and compare it with that of Australopithecus africanus and Cercocebus atys, an extant hard-object specialist, to assess whether the role of the P3 in food processing changed over time in A. afarensis. Premolar Phase II microwear textures are also compared with those of the molars to look for evidence of functional differentiation along the tooth row (i.e., that foods with different mechanical properties were processed by separate regions of the postcanine battery). Microwear textures were also examined along the mesial protoconid crest, the site of occlusion with the maxillary canine, of the A. afarensis P3 and compared with the same region in Pan troglodytes to determine whether microwear can be useful for identifying changes in the occlusal relationship between the P3 and maxillary canine in early Australopithecus. Finally, temporal trends in P3 Phase II and mesial microwear are considered. Results indicate that 1) both the P3 and molar Phase II facets of A. afarensis have less complex microwear textures than in A. africanus or C. atys; 2) A. afarensis P3 and molar Phase II textures differ, though not to the extent seen in taxa that eat hard and tough items; 3) microwear along the A. afarensis mesial protoconid crest is clearly distinct from that of the P. troglodytes, indicating that there is no honing equivalent in A. afarensis; and 4) there is little evidence of change over time in A. afarensis P3 microwear on either the mesial or Phase II facet. In sum, these results provide no evidence that A. afarensis routinely loaded either its premolars or molars to process hard objects or that A. afarensis P3 function changed over time.


Assuntos
Dente Pré-Molar/anatomia & histologia , Dente Pré-Molar/patologia , Fósseis , Hominidae/anatomia & histologia , Desgaste dos Dentes/patologia , Análise de Variância , Animais , Hominidae/classificação , Paleodontologia , Análise de Componente Principal
14.
Evol Anthropol ; 22(1): 9-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23436645

RESUMO

The microscopic traces of use wear on teeth have been extensively studied to provide information that will assist in elucidating the dietary habits of extinct hominin species. It has been amply documented that dental microwear provides information pertaining to diet for living animals, where there is a strong and consistent association between dental microwear patterns and different types of foods that are chewed. The details of occlusal surface wear patterns are capable of distinguishing among diets when the constituent food items differ in their fracture properties. For example, the microwear traces left on the teeth of mammals that crush hard, brittle foods such as nuts are generally dominated by pits, whereas traces left on the teeth of mammals that shear tough items such as leaves tend to be characterized by scratches. These microwear features result from and thus record actual chewing events. As such, microwear patterns are expected to be variably ephemeral, as individual features are worn away and replaced or overprinted by others as the tooth wears down in subsequent bouts of mastication. Indeed, it has been demonstrated, both in the laboratory and the wild, that short-term dietary variation can result in the turnover of microwear. Because occlusal microwear potentially reflects an individual's diet for a short time (days, weeks, or months, depending on the nature of the foods being masticated), tooth surfaces sampled at different times will display differences that relate to temporal (for example, seasonal) differences in diet.


Assuntos
Comportamento Alimentar , Mortalidade , Estações do Ano , Desgaste dos Dentes/patologia , Animais , Antropologia Física , Artiodáctilos/fisiologia , Elefantes/fisiologia , Paleodontologia , Filogenia , Primatas
15.
Am J Phys Anthropol ; 151(3): 356-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23794331

RESUMO

Inference of feeding adaptation in extinct species is challenging, and reconstructions of the paleobiology of our ancestors have utilized an array of analytical approaches. Comparative anatomy and finite element analysis assist in bracketing the range of capabilities in taxa, while microwear and isotopic analyses give glimpses of individual behavior in the past. These myriad approaches have limitations, but each contributes incrementally toward the recognition of adaptation in the hominin fossil record. Microwear and stable isotope analysis together suggest that australopiths are not united by a single, increasingly specialized dietary adaptation. Their traditional (i.e., morphological) characterization as "nutcrackers" may only apply to a single taxon, Paranthropus robustus. These inferences can be rejected if interpretation of microwear and isotopic data can be shown to be misguided or altogether erroneous. Alternatively, if these sources of inference are valid, it merely indicates that there are phylogenetic and developmental constraints on morphology. Inherently, finite element analysis is limited in its ability to identify adaptation in paleobiological contexts. Its application to the hominin fossil record to date demonstrates only that under similar loading conditions, the form of the stress field in the australopith facial skeleton differs from that in living primates. This observation, by itself, does not reveal feeding adaptation. Ontogenetic studies indicate that functional and evolutionary adaptation need not be conceptually isolated phenomena. Such a perspective helps to inject consideration of mechanobiological principles of bone formation into paleontological inferences. Finite element analysis must employ such principles to become an effective research tool in this context.


Assuntos
Adaptação Biológica , Antropologia/métodos , Evolução Biológica , Dieta , Hominidae/anatomia & histologia , Animais , Fenômenos Biomecânicos , Isótopos de Carbono/análise , Esmalte Dentário/anatomia & histologia , Comportamento Alimentar , Análise de Elementos Finitos , Hominidae/fisiologia , Arcada Osseodentária/anatomia & histologia , Crânio/anatomia & histologia
16.
Arch Oral Biol ; 149: 105664, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889227

RESUMO

OBJECTIVE: To examine early Homo sapiens fossils from the Late Pleistocene site of Klasies River Main Site, South Africa for evidence of hypercementosis. The specimens represent seven adult individuals dated to between 119,000 and 58,000 years ago. These observations are contextualized in relation to the incidences of hypercementosis among recent human populations and fossil human samples and the potential etiologies of hypercementosis. DESIGN: The fossils were investigated utilizing micro-CT and nano-CT scanning to visualize and measure cementum apposition on permanent incisor, premolar and molar roots. Cementum thickness was measured at mid-root level, and the volume of the cementum sleeve was calculated for the two fossil specimens that display marked hypercementosis. RESULTS: Two of the fossils display no evidence of cementum hypertrophy. Three exhibit moderate cementum thickening, barely attaining the quantitative threshold for hypercementosis. Two evince marked hypercementosis. One of the Klasies specimens with marked hypercementosis is judged to be an older individual with periapical abscessing. The second specimen is a younger adult, and seemingly similar in age to other Klasies fossils that exhibit only minimal cementum apposition. However, this second specimen exhibits dento-alveolar ankylosis of the premolar and molars. CONCLUSIONS: These two fossils from Klasies River Main Site provide the earliest manifestation of hypercementosis in Homo sapiens.


Assuntos
Hominidae , Hipercementose , Adulto , Humanos , Animais , Fósseis , África do Sul , Rios , Raiz Dentária/diagnóstico por imagem
17.
J Hum Evol ; 63(5): 750-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23044372

RESUMO

The human fossils, artefacts and faunal remains from the Middle Stone Age (MSA) deposits of Klasies River Main Site have featured prominently in discussions of the evolution of modern human morphology and the emergence of human behavioral modernity. Nearly 40 human fossils were uncovered by John Wymer's (1967-1968) excavations, and subsequent work by Hilary Deacon (1984-1995) has produced an additional dozen specimens. Many of the latter have been described, but most of the dental remains have been afforded only cursory mention and provisional identification. These specimens are documented here, and questions of individual association among some of the fossils from Wymer's excavations are also addressed. Three teeth provide the first indisputable evidence for juvenile individuals in the deposit. The proportion of juvenile to adult remains in the MSA levels at Klasies is notably lower than in other penecontemporaneous South African coastal MSA sites such as Die Kelders Cave 1 and Blombos Cave, where the proportion of juveniles is seemingly in closer keeping with coastal, geographically proximate Later Stone Age sites such as Oakhurst Shelter and Matjes River Cave. The sizes of most of the recently identified human teeth from Klasies seem to affirm at least one arguable aspect of morphometric modernity in the MSA at this site in the form of a tendency for tooth size reduction.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Dente/anatomia & histologia , Animais , Sedimentos Geológicos , Humanos , África do Sul
18.
J Hum Evol ; 62(5): 593-604, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22459766

RESUMO

The important question of whether the Australopithecus africanus hypodigm is taxonomically heterogeneous revolves largely around the interpretation of the morphological variation exhibited by the fossils from Sterkfontein. The sex assignment of these specimens is a critical component in the evaluation of their morphological variability. The Sts 5 cranium is pivotal in this regard because it is the most complete and undistorted specimen attributed to A. africanus. Although it has traditionally been regarded as an adult female, this view has been challenged. In particular, it has been argued recently that Sts 5 is a juvenile and that this, together with alveolar bone loss that has supposedly reduced the size of the canine socket, has led to its misinterpretation as a female. Virtual reconstruction of the M(3) roots (and/or alveoli) contradicts arguments that these teeth were erupting at the time of death. Regardless, canine emergence and root completion are well ahead of M(3) development in juvenile australopiths from Sterkfontein. Thus, even if the M(3) root of Sts 5 was incomplete, its canine root would have been fully formed. Measurements of palate depth indicate that the alveolar margins of Sts 5 have not suffered from much (if any) bone loss in the region of the C/P(3); any additional bone would result in a palate of truly exceptional depth. Therefore, the dimensions of the canine alveolus of Sts 5 can be regarded as proxies for those of the canine root. The canine root of Sts 5 is among the smallest recorded for any Sterkfontein australopith, which provides strong support for Robert Broom's initial attribution of sex to this specimen. There is no evidence to contradict the assertion that 'Mrs. Ples' is an adult female.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Caracteres Sexuais , Análise para Determinação do Sexo/métodos , Crânio/anatomia & histologia , Animais , Feminino , Humanos , Masculino , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
19.
J Hum Evol ; 63(4): 597-609, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22901553

RESUMO

The specific attribution of the large hominin M(2) (GDA-2) from Gondolin has significant implications for the paleobiology of Paranthropus. If it is a specimen of Paranthropus robustus it impacts that species' size range, and if it belongs to Paranthropus boisei it has important biogeographic implications. We evaluate crown size, cusp proportions and the likelihood of encountering a large-bodied mammal species in both East and South Africa in the Early Pleistocene. The tooth falls well outside the P. robustus sample range, and comfortably within that for penecontemporaneous P. boisei. Analyses of sample range, distribution and variability suggest that it is possible, albeit unlikely to find a M(2) of this size in the current P. robustus sample. However, taphonomic agents - carnivore (particularly leopard) feeding behaviors - have likely skewed the size distribution of the Swartkrans and Drimolen P. robustus assemblage. In particular, assemblages of large-bodied mammals accumulated by leopards typically display high proportions of juveniles and smaller adults. The skew in the P. robustus sample is consistent with this type of assemblage. Morphological evidence in the form of cusp proportions is congruent with GDA-2 representing P. robustus rather than P. boisei. The comparatively small number of large-bodied mammal species common to both South and East Africa in the Early Pleistocene suggests a low probability of encountering an herbivorous australopith in both. Our results are most consistent with the interpretation of the Gondolin molar as a very large specimen of P. robustus. This, in turn, suggests that large, presumptive male, specimens are rare, and that the levels of size variation (sexual dimorphism) previously ascribed to this species are likely to be gross underestimates.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Coroa do Dente/anatomia & histologia , Animais , Feminino , Hominidae/classificação , Masculino , Paleodontologia/métodos , África do Sul
20.
Am J Phys Anthropol ; 148(2): 285-317, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22610903

RESUMO

Determining the diet of an extinct species is paramount in any attempt to reconstruct its paleoecology. Because the distribution and mechanical properties of food items may impact postcranial, cranial, mandibular, and dental morphologies related to their procurement, ingestion, and mastication, these anatomical attributes have been studied intensively. However, while mechanical environments influence skeletal and dental features, it is not clear to what extent they dictate particular morphologies. Although biomechanical explanations have been widely applied to extinct hominins in attempts to retrodict dietary proclivities, morphology may say as much about what they were capable of eating, and perhaps more about phylogenetic history, than about the nature of the diet. Anatomical attributes may establish boundary limits, but direct evidence left by the foods that were actually (rather than hypothetically) consumed is required to reconstruct diet. Dental microwear and the stable light isotope chemistry of tooth enamel provide such evidence, and are especially powerful when used in tandem. We review the foundations for microwear and biogeochemistry in diet reconstruction, and discuss this evidence for six early hominin species (Ardipithecus ramidus, Australopithecus anamensis, Au. afarensis, Au. africanus, Paranthropus robustus, and P. boisei). The dietary signals derived from microwear and isotope chemistry are sometimes at odds with inferences from biomechanical approaches, a potentially disquieting conundrum that is particularly evident for several species.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Desgaste dos Dentes/patologia , Dente/patologia , Dente/fisiologia , Animais , Isótopos de Carbono/análise , Ecologia , Hominidae , Isótopos de Oxigênio/análise , Paleodontologia , Dente/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA