Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 658: 584-596, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134667

RESUMO

HYPOTHESIS: Calcium carbonate (CaCO3) nanoparticles could have great potential for contrast-enhanced ultrasound imaging (CEUS) due to their gas-generating properties and sensitivity to physiological conditions. However, the use of nano CaCO3 for biomedical applications requires the assistance of stabilizers to control the size and avoid the fast dissolution/recrystallization of the particles when exposed to aqueous conditions. EXPERIMENTS: Herein, we report the stabilization of nano CaCO3 using lignin, and synthesized core-shell amorphous CaCO3-lignin nanoparticles (LigCC NPs) with a diameter below 100 nm. We have then investigated the echogenicity of the LigCC NPs by monitoring the consequent generation of contrast in vitro for 90 min in linear and non-linear B-mode imaging. FINDINGS: This research explores how lignin type and structure affect stabilization efficiency, lignin structuration around CaCO3 cores, and particle echogenicity. Interestingly, by employing lignin as the stabilizer, it becomes possible to maintain the echogenic properties of CaCO3, whereas the use of lipid coatings prevents the production of signal generation in ultrasound imaging. This work opens new avenue for CEUS imaging of the vascular and extravascular space using CaCO3, as it highlights the potential to generate contrast for extended durations at physiological pH by utilizing the amorphous phase of CaCO3.


Assuntos
Lignina , Nanopartículas , Nanopartículas/química , Ultrassonografia/métodos , Carbonato de Cálcio/química , Água
2.
J Colloid Interface Sci ; 626: 178-192, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35785603

RESUMO

HYPOTHESIS: Strikingly, Kraft lignin nanoparticles (KLNPs) can substitute polluting nanoparticles in diverse applications. An attractive method for synthesizing KLNPs is Solvent shifting. We hypothesized that by a detailed understanding of the solvent properties and influence of the process parameters, one could derive new fundamental and technical information about the lignin nanoparticle formation process. EXPERIMENTS: DMSO and THF were chosen best solvents based on the Hansen solubility parameter of lignin. The four synthesis parameters such as lignin concentration, (anti-solvent) water volume, temperature, and stirring speed were used to investigate the size, polydispersity index (PDI), morphology as well as the thermal, mechanical and optical properties of KLNPsDMSO & KLNPsTHF. FINDINGS: KLNPsTHF follows the well-known nucleation and growth (NG) mechanism, resulting in spherical KLNPs (43 ± 12 nm: 0.20 PDI). Surprisingly, KLNPsDMSO follows a unique mechanism resembling spinodal decomposition (SD), which generates rare bicontinuous-to-spherical KLNPs (17 ± 8 nm: 0.20 PDI). Remarkably, we show that the difference in the KLNPs mechanism modulates their intrinsic properties, such as glass transition temperature (Tg), specific surface area (SSA), elastic modulus (EM) and optical properties. Beyond the new mechanism, our synthesis resulted in reproducible ultra-small KLNPs with an excellent % yield. Such findings have vast implications in high-performance nanocomposites.


Assuntos
Lignina , Nanopartículas , Dimetil Sulfóxido , Solventes
3.
ACS Appl Mater Interfaces ; 11(9): 8858-8866, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785254

RESUMO

Nanotopography with length scales of the order of extracellular matrix elements offers the possibility of regulating cell behavior. Investigation of the impact of nanotopography on cell response has been limited by the inability to precisely control geometries, especially at high spatial resolutions and across practically large areas. In this paper, we demonstrate well-controlled and periodic nanopillar arrays of silicon and investigate their impact on osteogenic differentiation of human mesenchymal stem cells (hMSCs). Silicon nanopillar arrays with critical dimensions in the range of 40-200 nm, exhibiting standard deviations below 15% across full wafers, were realized using the self-assembly of block copolymer colloids. Immunofluorescence and quantitative polymerase chain reaction measurements reveal clear dependence of osteogenic differentiation of hMSCs on the diameter and periodicity of the arrays. Further, the differentiation of hMSCs was found to be dependent on the age of the donor. While osteoblastic differentiation was found to be promoted by the pillars with larger diameters and heights independent of donor age, they were found to be different for different spacings. Pillar arrays with smaller pitch promoted differentiation from a young donor, while a larger spacing promoted those of an old donor. These findings can contribute for the development of personalized treatments of bone diseases, namely, novel implant nanostructuring depending on patient age.


Assuntos
Nanoestruturas/química , Adulto , Idoso , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , Osteogênese , Osteopontina/genética , Osteopontina/metabolismo , Poliestirenos/química , Polivinil/química , Piridinas/química , Silício/química , Análise Serial de Tecidos/instrumentação , Análise Serial de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA