Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(22): 16441-16452, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283689

RESUMO

Among ubiquitous phosphorus (P) reserves in environmental matrices are ribonucleic acid (RNA) and polyphosphate (polyP), which are, respectively, organic and inorganic P-containing biopolymers. Relevant to P recycling from these biopolymers, much remains unknown about the kinetics and mechanisms of different acid phosphatases (APs) secreted by plants and soil microorganisms. Here we investigated RNA and polyP dephosphorylation by two common APs, a plant purple AP (PAP) from sweet potato and a fungal phytase from Aspergillus niger. Trends of δ18O values in released orthophosphate during each enzyme-catalyzed reaction in 18O-water implied a different extent of reactivity. Subsequent enzyme kinetics experiments revealed that A. niger phytase had 10-fold higher maximum rate for polyP dephosphorylation than the sweet potato PAP, whereas the sweet potato PAP dephosphorylated RNA at a 6-fold faster rate than A. niger phytase. Both enzymes had up to 3 orders of magnitude lower reactivity for RNA than for polyP. We determined a combined phosphodiesterase-monoesterase mechanism for RNA and terminal phosphatase mechanism for polyP using high-resolution mass spectrometry and 31P nuclear magnetic resonance, respectively. Molecular modeling with eight plant and fungal AP structures predicted substrate binding interactions consistent with the relative reactivity kinetics. Our findings implied a hierarchy in enzymatic P recycling from P-polymers by phosphatases from different biological origins, thereby influencing the relatively longer residence time of RNA versus polyP in environmental matrices. This research further sheds light on engineering strategies to enhance enzymatic recycling of biopolymer-derived P, in addition to advancing environmental predictions of this P recycling by plants and microorganisms.


Assuntos
6-Fitase , 6-Fitase/química , 6-Fitase/genética , 6-Fitase/metabolismo , Fósforo , Monoéster Fosfórico Hidrolases/metabolismo , Cinética , Simulação de Acoplamento Molecular , Fosfatase Ácida/química , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Polifosfatos , Isótopos , Biopolímeros , RNA
2.
Environ Sci Technol ; 46(9): 5010-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22471394

RESUMO

This study proposed and demonstrated the application of a new Raman microscopy-based method for metabolic state-based identification and quantification of functionally relevant populations, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), in enhanced biological phosphorus removal (EBPR) system via simultaneous detection of multiple intracellular polymers including polyphosphate (polyP), glycogen, and polyhydroxybutyrate (PHB). The unique Raman spectrum of different combinations of intracellular polymers within a cell at a given stage of the EBPR cycle allowed for its identification as PAO, GAO, or neither. The abundance of total PAOs and GAOs determined by Raman method were consistent with those obtained with polyP staining and fluorescence in situ hybridization (FISH). Different combinations and quantities of intracellular polymer inclusions observed in single cells revealed the distribution of different sub-PAOs groups among the total PAO populations, which exhibit phenotypic and metabolic heterogeneity and diversity. These results also provided evidence for the hypothesis that different PAOs may employ different extents of combination of glycolysis and TCA cycle pathways for anaerobic reducing power and energy generation and it is possible that some PAOs may rely on TCA cycle solely without glycolysis. Sum of cellular level quantification of the internal polymers associated with different population groups showed differentiated and distributed trends of glycogen and PHB level between PAOs and GAOs, which could not be elucidated before with conventional bulk measurements of EBPR mixed cultures.


Assuntos
Glicogênio/metabolismo , Técnicas Microbiológicas , Polímeros/análise , Polifosfatos/metabolismo , Análise Espectral Raman , Fósforo/isolamento & purificação , Poluição Química da Água/prevenção & controle
3.
Environ Sci Technol ; 46(6): 3244-52, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22360302

RESUMO

A number of agent-based models (ABMs) for biological wastewater treatment processes have been developed, but their skill in predicting heterogeneity of intracellular storage states has not been tested against observations due to the lack of analytical methods for measuring single-cell intracellular properties. Further, several mechanisms can produce and maintain heterogeneity (e.g., different histories, uneven division) and their relative importance has not been explored. This article presents an ABM for the enhanced biological phosphorus removal (EBPR) treatment process that resolves heterogeneity in three intracellular polymer storage compounds (i.e., polyphosphate, polyhydroxybutyrate, and glycogen) in three functional microbial populations (i.e., polyphosphate-accumulating, glycogen-accumulating, and ordinary heterotrophic organisms). Model predicted distributions were compared to those based on single-cell estimates obtained using a Raman microscopy method for a laboratory-scale sequencing batch reactor (SBR) system. The model can reproduce many features of the observed heterogeneity. Two methods for introducing heterogeneity were evaluated. First, biological variability in individual cell behavior was simulated by randomizing model parameters (e.g., maximum acetate uptake rate) at division. This method produced the best fit to the data. An optimization algorithm was used to determine the best variability (i.e., coefficient of variance) for each parameter, which suggests large variability in acetate uptake. Second, biological variability in individual cell states was simulated by randomizing state variables (e.g., internal nutrient) at division, which was not able to maintain heterogeneity because the memory in the internal states is too short. These results demonstrate the ability of ABM to predict heterogeneity and provide insights into the factors that contribute to it. Comparison of the ABM with an equivalent population-level model illustrates the effect of accounting for the heterogeneity in models.


Assuntos
Bactérias/metabolismo , Modelos Biológicos , Fósforo/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Glicogênio/metabolismo , Polímeros/metabolismo , Polifosfatos/metabolismo , Análise Espectral Raman
4.
Colloids Surf B Biointerfaces ; 165: 381-387, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29529580

RESUMO

A microfluidic device was designed to investigate filtration of particles in an electrolyte in the presence of liquid flow. Polystyrene spheres in potassium chloride solution at concentrations of 3-100 mM were allowed to settle and adhere to a glass substrate. A particle free solution at the same concentration was then flushed through the microfluidic channel at 0.03-4.0 mL/h. As the hydrodynamic drag on the adhered particles exceeded the intersurface interaction with the substrate, "pull-off" occurred and the particles detached. Filtration efficiency, α, was shown to a function of both ionic concentration of the liquid medium and flow speed, consistent with a phenomenological model based on the classical DLVO theory. The results elucidates the underlying physics of filtration.


Assuntos
Filtração/métodos , Vidro/química , Microfluídica/métodos , Poliestirenos/química , Cloreto de Potássio/química , Coloides , Dimetilpolisiloxanos/química , Eletrólitos/química , Filtração/instrumentação , Hidrodinâmica , Cinética , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microesferas , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA