Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Development ; 140(21): 4375-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24067353

RESUMO

Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated ß-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits ß-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular ß-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3ß in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating ß-catenin signaling activity during tooth development.


Assuntos
Diferenciação Celular/fisiologia , Fator 3 de Crescimento de Fibroblastos/metabolismo , Mesoderma/embriologia , Odontogênese/fisiologia , Transdução de Sinais/fisiologia , Dente/embriologia , Animais , Fator 3 de Crescimento de Fibroblastos/farmacologia , Galactosídeos , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Indóis , Mesoderma/citologia , Camundongos , Microesferas , Crista Neural/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , beta Catenina/metabolismo
2.
Dev Biol ; 391(2): 170-81, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24785830

RESUMO

Congenital bony syngnathia, a rare but severe human birth defect, is characterized by bony fusion of the mandible to the maxilla. However, the genetic mechanisms underlying this birth defect are poorly understood, largely due to limitation of available animal models. Here we present evidence that transgenic expression of Bmp4 in neural crest cells causes a series of craniofacial malformations in mice, including a bony fusion between the maxilla and hypoplastic mandible, resembling the bony syngnathia syndrome in humans. In addition, the anterior portion of the palatal shelves emerged from the mandibular arch instead of the maxilla in the mutants. Gene expression assays showed an altered expression of several facial patterning genes, including Hand2, Dlx2, Msx1, Barx1, Foxc2 and Fgf8, in the maxillary and mandibular processes of the mutants, indicating mis-patterned cranial neural crest (CNC) derived cells in the facial region. However, despite of formation of cleft palate and ectopic cartilage, forced expression of a constitutively active form of BMP receptor-Ia (caBmprIa) in CNC lineage did not produce the syngnathia phenotype, suggesting a non-cell autonomous effect of the augmented BMP4 signaling. Our studies demonstrate that aberrant BMP4-mediated signaling in CNC cells leads to mis-patterned facial skeleton and congenital bony syngnathia, and suggest an implication of mutations in BMP signaling pathway in human bony syngnathia.


Assuntos
Proteína Morfogenética Óssea 4/genética , Anormalidades Maxilomandibulares/genética , Mandíbula/anormalidades , Maxila/anormalidades , Modelos Genéticos , Animais , Proteína Morfogenética Óssea 4/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Fissura Palatina/embriologia , Fissura Palatina/genética , Ossos Faciais/anormalidades , Ossos Faciais/embriologia , Ossos Faciais/crescimento & desenvolvimento , Humanos , Mandíbula/embriologia , Maxila/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Crista Neural/citologia , Crista Neural/metabolismo , Transdução de Sinais/genética , Proteína Wnt1/genética
3.
Cell Tissue Res ; 355(2): 345-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24248941

RESUMO

The temporomandibular joint (TMJ) consists in the glenoid fossa arising from the otic capsule through intramembranous ossification, the fibrocartilaginous disc and the condyle, which is derived from the secondary cartilage by endochondral ossification. We have reported previously that cranial neural-crest-specific inactivation of the homeobox gene Shox2, which is expressed in the mesenchymal cells of the maxilla-mandibular junction and later in the progenitor cells and perichondrium of the developing chondyle, leads to dysplasia and ankylosis of the TMJ and that replacement of the mouse Shox2 with the human SHOX gene rescues the dysplastic and ankylosis phenotypes but results in a prematurely worn out articular disc. In this study, we investigate the molecular and cellular bases for the prematurely worn out articular disc in the TMJ of mice carrying the human SHOX replacement allele in the Shox2 locus (termed Shox2 (SHOX-KI/KI)). We find that the developmental process and expression of several key genes in the TMJ of Shox2 (SHOX-KI/KI) mice are similar to that of controls. However, the disc of the Shox2 (SHOX-KI/KI) TMJ exhibits a reduced level of Collagen I and Aggrecan, accompanied by increased activities of matrix metalloproteinases and a down-regulation of Ihh expression. Dramatically increased cell apoptosis in the disc was also observed. These combinatory cellular and molecular defects appear to contribute to the observed disc phenotype, suggesting that, although human SHOX can exert similar functions to mouse Shox2 in regulating early TMJ development, it apparently has a distinct function in the regulation of those molecules that are involved in tissue homeostasis.


Assuntos
Proteínas de Homeodomínio/metabolismo , Luxações Articulares/congênito , Disco da Articulação Temporomandibular/patologia , Animais , Animais Recém-Nascidos , Apoptose , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Fatores de Transcrição SOX9/metabolismo , Proteína de Homoeobox de Baixa Estatura , Disco da Articulação Temporomandibular/enzimologia
4.
Genesis ; 51(7): 515-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620086

RESUMO

Shox2 is expressed in several developing organs in a tissue specific manner in both mice and humans, including the heart, palate, limb, and nervous system. To better understand the spatial and temporal expression patterns of Shox2 and to systematically dissect the genetic cascade regulated by Shox2, we created Shox2-LacZ and Shox2-Cre knock-in mouse lines. We show that the Shox2-LacZ allele expresses beta-galactosidase reporter gene in a fashion that recapitulates the endogenous Shox2 expression pattern in developing organs, including the sinoatrial node (SAN), the anterior portion of the palate, and the proximal region of the limb bud. Conditional deletion of Shox2 in mice carrying the Shox2-Cre allele yielded SAN phenotypes that resemble conventional Shox2 knockout mice. Our results indicate that the Shox2-Cre allele offer a useful tool for tissue specific manipulation of genes in a number of developing organs, particularly in the developing SAN.


Assuntos
Proteínas de Homeodomínio/genética , Botões de Extremidades/metabolismo , Palato/metabolismo , Nó Sinoatrial/metabolismo , Alelos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genes Reporter , Coração/embriologia , Proteínas de Homeodomínio/metabolismo , Integrases/genética , Integrases/metabolismo , Botões de Extremidades/embriologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Palato/embriologia , Nó Sinoatrial/embriologia , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
5.
Neurobiol Dis ; 47(2): 163-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521462

RESUMO

The small heat shock protein HSPB1 is a multifunctional, α-crystallin-based protein that has been shown to be neuroprotective in animal models of motor neuron disease and peripheral nerve injury. Missense mutations in HSPB1 result in axonal Charcot-Marie-Tooth disease with minimal sensory involvement (CMT2F) and distal hereditary motor neuropathy type 2 (dHMN-II). These disorders are characterized by a selective loss of motor axons in peripheral nerve resulting in distal muscle weakness and often severe disability. To investigate the pathogenic mechanisms of HSPB1 mutations in motor neurons in vivo, we have developed and characterized transgenic PrP-HSPB1 and PrP-HSPB1(R136W) mice. These mice express the human HSPB1 protein throughout the nervous system including in axons of peripheral nerve. Although both mouse strains lacked obvious motor deficits, the PrP-HSPB1(R136W) mice developed an age-dependent motor axonopathy. Mutant mice showed axonal pathology in spinal cord and peripheral nerve with evidence of impaired neurofilament cytoskeleton, associated with organelle accumulation. Accompanying these findings, increases in the number of Schmidt-Lanterman incisures, as evidence of impaired axon-Schwann cell interactions, were present. These observations suggest that overexpression of HSPB1(R136W) in neurons is sufficient to cause pathological and electrophysiological changes in mice that are seen in patients with hereditary motor neuropathy.


Assuntos
Envelhecimento/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP27/genética , Neurônios Motores/metabolismo , Mutação/fisiologia , Envelhecimento/patologia , Animais , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Proteínas de Choque Térmico HSP27/biossíntese , Proteínas de Choque Térmico , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Distribuição Aleatória
6.
Dev Dyn ; 240(11): 2466-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21953591

RESUMO

The mammalian temporomandibular joint (TMJ) develops from two distinct mesenchymal condensations that grow toward each other and ossify through different mechanisms, with the glenoid fossa undergoing intramembranous ossification while the condyle being endochondral in origin. In this study, we used various genetically modified mouse models to investigate tissue interaction between the condyle and glenoid fossa during TMJ formation in mice. We report that either absence or dislocation of the condyle results in an arrested glenoid fossa development. In both cases, glenoid fossa development was initiated, but failed to sustain, and became regressed subsequently. However, condyle development appears to be independent upon the presence of the forming glenoid fossa. In addition, we show that substitution of condyle by Meckel's cartilage is able to sustain glenoid fossa development. These observations suggest that proper signals from the developing condyle or Meckel's cartilage are required to sustain the glenoid fossa development.


Assuntos
Comunicação Celular/fisiologia , Cavidade Glenoide/embriologia , Côndilo Mandibular/embriologia , Articulação Temporomandibular/embriologia , Animais , Cartilagem/anormalidades , Cartilagem/embriologia , Cartilagem/metabolismo , Cartilagem/patologia , Comunicação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Anormalidades Craniofaciais/genética , Embrião de Mamíferos , Inativação Gênica , Cavidade Glenoide/crescimento & desenvolvimento , Côndilo Mandibular/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Crista Neural/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Articulação Temporomandibular/crescimento & desenvolvimento
7.
J Mol Cell Biol ; 7(5): 441-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26243590

RESUMO

The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Crista Neural/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genótipo , Humanos , Imuno-Histoquímica , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
PLoS One ; 10(9): e0136951, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332583

RESUMO

In palatogenesis, palatal shelves are patterned along the mediolateral axis as well as the anteroposterior axis before the onset of palatal fusion. Fgf10 specifically expressed in lateral mesenchyme of palate maintains Shh transcription in lateral epithelium, while Fgf7 activated in medial mesenchyme by Dlx5, suppressed the expansion of Shh expression to medial epithelium. How FGF signaling pathways regulate the cell behaviors of developing palate remains elusive. In our study, we found that when Fgf8 is ectopically expressed in the embryonic palatal mesenchyme, the elevation of palatal shelves is impaired and the posterior palatal shelves are enlarged, especially in the medial side. The palatal deformity results from the drastic increase of cell proliferation in posterior mesenchyme and decrease of cell proliferation in epithelium. The expression of mesenchymal Fgf10 and epithelial Shh in the lateral palate, as well as the Dlx5 and Fgf7 transcription in the medial mesenchyme are all interrupted, indicating that the epithelial-mesenchymal interactions during palatogenesis are disrupted by the ectopic activation of mesenchymal Fgf8. Besides the altered Fgf7, Fgf10, Dlx5 and Shh expression pattern, the reduced Osr2 expression domain in the lateral mesenchyme also suggests an impaired mediolateral patterning of posterior palate. Moreover, the ectopic Fgf8 expression up-regulates pJak1 throughout the palatal mesenchyme and pErk in the medial mesenchyme, but down-regulates pJak2 in the epithelium, suggesting that during normal palatogenesis, the medial mesenchymal cell proliferation is stimulated by FGF/Erk pathway, while the epithelial cell proliferation is maintained through FGF/Jak2 pathway.


Assuntos
Proliferação de Células , Fissura Palatina/genética , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Palato/anormalidades , Palato/embriologia , Animais , Proteínas Hedgehog/genética , Camundongos , Palato/citologia , RNA não Traduzido/genética , Transdução de Sinais , Fatores de Transcrição/genética , Regulação para Cima
9.
Mech Dev ; 125(8): 729-42, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18514492

RESUMO

The temporomandibular joint (TMJ) is a unique synovial joint whose development differs from the formation of other synovial joints. Mutations have been associated with the developmental defects of the TMJ only in a few genes. In this study, we report the expression of the homeobox gene Shox2 in the cranial neural crest derived mesenchymal cells of the maxilla-mandibular junction and later in the progenitor cells and undifferentiated chondrocytes of the condyle as well as the glenoid fossa of the developing TMJ. A conditional inactivation of Shox2 in the cranial neural crest-derived cells causes developmental abnormalities in the TMJ, including dysplasia of the condyle and glenoid fossa. The articulating disc forms but fuses with the fibrous layers of the condyle and glenoid fossa, clinically known as TMJ ankylosis. Histological examination indicates a delay in development in the mutant TMJ, accompanied by a significantly reduced rate of cell proliferation. In situ hybridization further demonstrates an altered expression of several key osteogenic genes and a delayed expression of the osteogenic differentiation markers. Shox2 appears to regulate the expression of osteogenic genes and is essential for the development and function of the TMJ. The Shox2 conditional mutant thus provides a unique animal model of TMJ ankylosis.


Assuntos
Anquilose/metabolismo , Doenças do Desenvolvimento Ósseo/metabolismo , Proteínas de Homeodomínio/biossíntese , Articulações/anormalidades , Côndilo Mandibular/anormalidades , Células-Tronco Mesenquimais/metabolismo , Osso Temporal/anormalidades , Animais , Anquilose/patologia , Doenças do Desenvolvimento Ósseo/patologia , Diferenciação Celular , Condrócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Articulações/embriologia , Articulações/metabolismo , Côndilo Mandibular/embriologia , Côndilo Mandibular/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Crista Neural/citologia , Osteogênese , Osso Temporal/embriologia , Osso Temporal/metabolismo
10.
Dev Dyn ; 237(5): 1509-16, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18393307

RESUMO

Many genes are known to function in a region-specific manner in the developing secondary palate. We have previously shown that Shox2-deficient embryos die at mid-gestation stage and develop an anterior clefting phenotype. Here, we show that mice carrying a conditional inactivation of Shox2 in the palatal mesenchyme survive the embryonic and neonatal lethality, but develop a wasting syndrome. Phenotypic analyses indicate a delayed closure of the secondary palate at the anterior end, leading to a failed fusion of the primary and secondary palates. Consistent with a role proposed for Shox2 in skeletogenesis, Shox2 inactivation causes a significantly reduced bone formation in the hard palate, probably due to a down-regulation of Runx2 and Osterix. We conclude that the secondary palatal shelves are capable of fusion with each other, but fail to fuse with the primary palate in a developmentally delayed manner. Mice carrying an anterior cleft can survive neonatal lethality.


Assuntos
Fissura Palatina , Proteínas de Homeodomínio/metabolismo , Palato/anatomia & histologia , Palato/embriologia , Animais , Fissura Palatina/genética , Fissura Palatina/mortalidade , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hibridização In Situ , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteogênese/fisiologia , Palato/anormalidades , Fenótipo , Fatores de Transcrição SOX9 , Taxa de Sobrevida , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Development ; 135(23): 3871-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18948417

RESUMO

Tissue and molecular heterogeneities are present in the developing secondary palate along the anteroposterior (AP) axis in mice. Here, we show that Wnt5a and its receptor Ror2 are expressed in a graded manner along the AP axis of the palate. Wnt5a deficiency leads to a complete cleft of the secondary palate, which exhibits distinct phenotypic alterations at histological, cellular and molecular levels in the anterior and posterior regions of the palate. We demonstrate that there is directional cell migration within the developing palate. In the absence of Wnt5a, this directional cell migration does not occur. Genetic studies and in vitro organ culture assays further demonstrate a role for Ror2 in mediating Wnt5a signaling in the regulation of cell proliferation and migration during palate development. Our results reveal distinct regulatory roles for Wnt5a in gene expression and cell proliferation along the AP axis of the developing palate, and an essential role for Wnt5a in the regulation of directional cell migration.


Assuntos
Movimento Celular , Mamíferos/embriologia , Palato/citologia , Palato/embriologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Wnt/metabolismo , Animais , Padronização Corporal , Bromodesoxiuridina/metabolismo , Proliferação de Células , Quimiotaxia , Fissura Palatina/enzimologia , Fissura Palatina/patologia , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Mesoderma/enzimologia , Mesoderma/patologia , Camundongos , Camundongos Mutantes , Palato/enzimologia , Palato/metabolismo , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteínas Wnt/deficiência , Proteínas Wnt/genética , Proteína Wnt-5a
12.
Dev Dyn ; 236(5): 1307-12, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17394220

RESUMO

In the developing murine tooth, the expression patterns of numerous regulatory genes have been examined and their roles have begun to be revealed. To unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of several regulatory genes, including BMP4, FGF8, MSX1, PAX9, PITX2, and SHOX2, and compared them with that found in mice. All of these genes are known to play critical roles in murine tooth development. Our results show that these genes exhibit basically similar expression patterns in the human tooth germ compared with that in the mouse. However, slightly different expression patterns were also observed for some of the genes at certain stages. For example, MSX1 expression was detected in the inner enamel epithelium in addition to the dental mesenchyme at the bell stage of the human tooth. Moreover, FGF8 expression remained in the dental epithelium at the cap stage, while PAX9 and SHOX2 expression was detected in both dental epithelium and mesenchyme of the human tooth germ. Our results indicate that, although slight differences exist in the gene expression patterns, the human and mouse teeth not only share considerable homology in odontogenesis but also use similar underlying molecular networks.


Assuntos
Odontogênese/genética , Germe de Dente/embriologia , Animais , Sequência de Bases , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Primers do DNA/genética , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Hibridização In Situ , Fator de Transcrição MSX1/genética , Camundongos , Fator de Transcrição PAX9/genética , Especificidade da Espécie , Fatores de Transcrição/genética , Proteína Homeobox PITX2
13.
Dev Dyn ; 235(5): 1334-44, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16628661

RESUMO

RNA interference (RNAi) has recently become a powerful tool to silence gene expression in mammalian cells, but its application in assessing gene function in mammalian developing organs remains highly limited. Here we describe several unique developmental properties of the mouse molar germ. Embryonic molar mesenchyme, but not the incisor mesenchyme, once dissociated into single cell suspension and re-aggregated, retains its odontogenic potential, the capability of a tissue to instruct an adjacent tissue to initiate tooth formation. Dissociated molar mesenchymal cells, even after being plated in cell culture, retain odontogenic competence, the capability of a tissue to respond to odontogenic signals and to support tooth formation. Most interestingly, while dissociated epithelial and mesenchymal cells of molar tooth germ are mixed and re-aggregated, the epithelial cells are able to sort out from the mesenchymal cells and organize into a well-defined dental epithelial structure, leading to the formation of a well-differentiated tooth organ after sub-renal culture. These unique molar developmental properties allow us to develop a strategy using a lentivirus-mediated RNAi approach to silence gene expression in dental mesenchymal cells and assess gene function in tooth development. We show that knockdown of Msx1 or Dlx2 expression in the dental mesenchyme faithfully recapitulates the tooth phenotype of their targeted mutant mice. Silencing of Barx1 expression in the dental mesenchyme causes an arrest of tooth development at the bud stage, demonstrating a crucial role for Barx1 in tooth formation. Our studies have established a reliable and rapid assay that would permit large-scale analysis of gene function in mammalian tooth development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Lentivirus , Interferência de RNA , Dente/embriologia , Animais , Linhagem Celular , Inativação Gênica , Vetores Genéticos , Humanos , Lentivirus/genética , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , Dente/metabolismo , Dente/virologia
14.
J Anat ; 207(5): 655-67, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16313398

RESUMO

Cleft palate is a congenital disorder arising from a failure in the multistep process of palate development. In its mildest form the cleft affects only the posterior soft palate. In more severe cases the cleft includes the soft (posterior) and hard (anterior) palate. In mice a number of genes show differential expression along the anterior-posterior axis of the palate. Mesenchymal heterogeneity is established early, as evident from Bmp4-mediated induction of Msx1 and cell proliferation exclusively in the anterior and Fgf8-specific induction of Pax9 in the posterior palate alone. In addition, the anterior palatal epithelium has the unique ability to induce Shox2 expression in the anterior mesenchyme in vivo and the posterior mesenchyme in vitro. Therefore, the induction and competence potentials of the epithelium and mesenchyme in the anterior are clearly distinct from those in the posterior. Defective growth in the anterior palate of Msx1-/- and Fgf10-/- mice leads to a complete cleft palate and supports the anterior-to-posterior direction of palatal closure. By contrast, the Shox2-/- mice exhibit incomplete clefts in the anterior presumptive hard palate with an intact posterior palate. This phenotype cannot be explained by the prevailing model of palatal closure. The ability of the posterior palate to fuse independent of the anterior palate in Shox2-/- mice underscores the intrinsic differences along the anterior-posterior axis of the palate. We must hitherto consider the heterogeneity of gene expression and function in the palate to understand better the aetiology and pathogenesis of non-syndromic cleft palate and the mechanics of normal palatogenesis.


Assuntos
Fissura Palatina/embriologia , Mesoderma/fisiologia , Palato/embriologia , Animais , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Substâncias de Crescimento/genética , Humanos , Camundongos , Camundongos Mutantes , Modelos Animais , Fenótipo
15.
Development ; 132(19): 4397-406, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16141225

RESUMO

The short stature homeobox gene SHOX is associated with idiopathic short stature in humans, as seen in Turner syndrome and Leri-Weill dyschondrosteosis, while little is known about its close relative SHOX2. We report the restricted expression of Shox2 in the anterior domain of the secondary palate in mice and humans. Shox2-/- mice develop an incomplete cleft that is confined to the anterior region of the palate, an extremely rare type of clefting in humans. The Shox2-/- palatal shelves initiate, grow and elevate normally, but the anterior region fails to contact and fuse at the midline, owing to altered cell proliferation and apoptosis, leading to incomplete clefting within the presumptive hard palate. Accompanied with these cellular alterations is an ectopic expression of Fgf10 and Fgfr2c in the anterior palatal mesenchyme of the mutants. Tissue recombination and bead implantation experiments revealed that signals from the anterior palatal epithelium are responsible for the restricted mesenchymal Shox2 expression. BMP activity is necessary but not sufficient for the induction of palatal Shox2 expression. Our results demonstrate an intrinsic requirement for Shox2 in palatogenesis, and support the idea that palatogenesis is differentially regulated along the anteroposterior axis. Furthermore, our results demonstrate that fusion of the posterior palate can occur independently of fusion in the anterior palate.


Assuntos
Proteínas de Homeodomínio/metabolismo , Palato/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Fissura Palatina/embriologia , Fissura Palatina/genética , Fissura Palatina/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Palato/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
16.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 37(4): 278-80, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12411176

RESUMO

OBJECTIVE: Screening for special genes of matrix proteins of dentin and enamel of mouse dental germ. METHODS: A cDNA library of dental germ of mouse was screened by differential display. The interesting clones were sequenced. RESULTS: Six positive clones were isolated from the cDNA library. The sequence of one of the six positive clones was homologous with the ameloblastin sequence of rat. There are 497 homologous base pairs between the 526 base pairs sequenced by pTriplEX 3' primer of this clone and the 32-580 sequence of the rat ameloblastin gene; and there are 533 homologous base pairs between the 567 base pairs sequenced by pTriplEX 5' primer of this clone and the 1285-1854 sequence of the rat ameloblastin gene. CONCLUSIONS: The full length cDNA sequence of the mouse ameloblastin was cloned.


Assuntos
Sequência de Bases , DNA Complementar , Sequência de Aminoácidos , Animais , Clonagem Molecular , Biblioteca Gênica , Camundongos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA