Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 1): 129449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232885

RESUMO

Tea bags have been extensively used in the food industry and daily life as an efficient way to pack tea. However, the large pores of the commercial tea bags not only lead to the inner contents of tea bag susceptible to bacteria and moisture but also result in the faster water infusion which is undesired during tea brewing. In this study, the polylactic acid (PLA)-PLA/sodium alginate (SA)/bromelain (BL) bilayer fiber membrane imitating the asymmetric wetting structure of lotus leaf blades was fabricated to avoid the above disadvantages of commercial tea bag. The PLA/SA/BL skin-core nanofiber membrane which imitating the skin-core structure of lotus leaf stems was first prepared as the hydrophilic and support layer, then a hydrophobic PLA layer was deposited on top via electrospinning. The PLA-PLA/SA/BL bilayer fiber membrane had a breaking strength of 5.5 MPa and started to decompose at 260 °C. Using this bilayer membrane, tea bags were designed with a novel structure where the hydrophobic PLA layer was placed in the same direction. The novel structure endow the those tea bags a slow and directional water transfer property. Therefore, the PLA-PLA/SA/BL bilayer fiber membrane has great potential for applications as tea bags.


Assuntos
Alginatos , Bromelaínas , Água/química , Poliésteres/química , Chá
2.
Int J Biol Macromol ; 265(Pt 1): 130803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484811

RESUMO

To solve the inherent problems of conductive hydrogels, such as relatively low mechanical properties and fatigue resistance, inability to work after water loss, and difficulty weaving. In this study, the borax-crosslinked polyvinyl alcohol/k-carrageenan (kC) conducting hydrogels (BPKKOH) were prepared by a simple one-pot method, and KOH treatment was used instead of the cumbersome and time-consuming freeze-thaw cycle to improve the comprehensive properties. The KOH treatment increased the hydrogel hydrogen bonding content by 7.72 % and synergized with the induction of kC by K+ to enhance the tensile and compressive strengths by 8.12 and 34.6 times, respectively. Meanwhile, the BPKKOH hydrogel's fatigue resistance and shape recovery after water loss were improved. Additionally, the BPKKOH hydrogels can be monitored for finger bending, showing clear and stable differences in electrical signals. BPKKOH hydrogels combined with Morse code realize applications in information transmission and encryption/decryption. Notably, introducing KOH ensures the molding and preparation of BPKKOH hydrogel fibers while having good signal responsiveness and monitoring ability. More importantly, it can be woven into fabrics that can be loaded with heavy weights, which has the potential to be directly applied in smart wearables. This work provides new ideas for applying flexible sensors and wearable smart textiles.


Assuntos
Hidrogéis , Álcool de Polivinil , Carragenina , Condutividade Elétrica , Água
3.
Int J Biol Macromol ; 229: 931-942, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36587650

RESUMO

Biomass-based aerogel fibers have attracted increasing attention due to their renewable nature. However, their disadvantages, such as low mechanical strength, poor long-range order, and easy combustion, are still significant challenges. Herein, a directed freezing-assisted forced stretching strategy is developed to fabricate sheath-core structured Ca-alginate/polyvinyl alcohol (Ca-A/PVA) aerogel fibers with Long-range-ordered pores. The Ca-A/PVA aerogel fibers (3:2 m/m) exhibit the best comprehensive mechanical properties in terms of low thermal conductivity of 0.0524 W·m-1·K-1, a density of 0.1614 g·cm-3, a porosity of 89.9 %, a tensile strength of 8.72 MPa, a tensile modulus of 249.7 MPa, a toughness of 1.98 MJ∙m-3, and a self-extinguishing time from the fire of <1.2 s. The Ca-A/PVA fabrics showed a maximum absolute temperature difference of 11.4 °C at -20 °C and 14.0 °C at 60 °C compared to the plate temperature. The presented strategy is generalizable to other alginate-based aerogel fibers (e.g., alginate/guar gum).


Assuntos
Alginatos , Álcool de Polivinil , Congelamento , Porosidade , Resistência à Tração
4.
Int J Biol Macromol ; 236: 124004, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914060

RESUMO

Currently, polyvinyl alcohol (PVA) and polyethylene oxide (PEO), as tissue engineering scaffolds materials, had been widely studied, however the hard issues in cell adhesive and antimicrobial properties still seriously limited their application in biomedical respects. Herein, we solved both hard issues by incorporating chitosan (CHI) into the PVA/PEO system, and successfully prepared PVA/PEO/CHI nanofiber scaffolds via electrospinning technology. First, the hierarchical pore structure and elevated porosity stacked by nanofiber of the nanofiber scaffolds supplied suitable space for cell growth. Significantly, the PVA/PEO/CHI nanofiber scaffolds (the cytotoxicity of grade 0) effectively improved cell adhesion by regulating the CHI content, and presented positively correlated with the CHI content. Besides, the excellent surface wettability of PVA/PEO/CHI nanofiber scaffolds exhibited maximum absorbability at a CHI content of 15 wt%. Based on the FTIR, XRD, and mechanical test results, we studied the semi-quantitative effect of hydrogen content on the aggregated state structure and mechanical properties of the PVA/PEO/CHI nanofiber scaffolds. The breaking stress of the nanofiber scaffolds increased with increasing CHI content, and the maximum value reached 15.37 MPa, increased by 67.61 %. Therefore, such dual biofunctional nanofiber scaffolds with improved mechanical properties showed great potential application in tissue engineering scaffolds.


Assuntos
Quitosana , Nanofibras , Quitosana/química , Engenharia Tecidual/métodos , Álcool de Polivinil/química , Polietilenoglicóis , Nanofibras/química , Alicerces Teciduais/química , Antibacterianos/farmacologia , Antibacterianos/química
5.
Int J Biol Macromol ; 253(Pt 7): 127397, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827402

RESUMO

In order to improve the adsorption performance of MoS2, as well as to solve the problems of MoS2-powder in adsorption, which is prone to agglomeration and difficulty to be recycled, we prepared MoS2-nanoflowers(MoS2-NFs), and mixed them with sodium alginate/polyvinyl alcohol(SA/PVA) to prepare MoS2-NFs/SA/PVA xerogel(MSP) by freezing-lyophilization. Then two forms of xerogels - block-MSP(MSPB) and spherical-MSP(MSPS) were prepared, and they were used as methylene blue(MB) and Cu2+ adsorbent. It was found that MoS2-NFs were evenly dispersed inside the SA/PVA with no agglomeration, while the interior of MSPB/MSPS showed the structure of parallel-pores and radial-pores, respectively. The adsorption capacity of MSPB/MSPS on MB can reach 233 mg/g, which is five times higher than SA/PVA-gel, showing excellent synergistic-adsorption effect, and the adsorption capacity for Cu2+ reaches 271 mg/g. The adsorption mechanism indicated that the adsorption of MB by MSPB/MSPS conformed to pseudo-first-order model, with electrostatic force as the main force. And their adsorption of Cu2+ conformed to pseudo-second-order model and was dominated by Lewis acid/base soft-soft interactions. Notably, after long-term adsorption, MSPB/MSPS maintains its shape and more than 90 % of the adsorption capacity, ensuring the recovery and reuse of materials. So, MSPB/MSPS has great potential in adsorption, providing a new solution for sewage purification.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/química , Molibdênio/química , Azul de Metileno/química , Álcool de Polivinil/química , Adsorção , Porosidade , Alginatos/química , Poluentes Químicos da Água/química , Cinética
6.
Int J Biol Macromol ; 207: 140-151, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35257727

RESUMO

Sodium alginate/krill protein/polyacrylamide (SA/AKP/PAM) hydrogel with "covalent bond-ion complex-hydrogen bond" multi-network structure was prepared by covalent cross-linking and complexion ion crosslinking using SA, AKP, and acrylamide (AM) as raw materials. The effects of ion species (Fe3+, Ba2+, Sr2+, Ca2+, and Zn2+) on the structure, morphology, and properties of multi-network hydrogels were studied in detail. The results showed that the mechanical strength of ionic cross-linked hydrogels increased significantly. The compressive strength of Fe3+ cross-linked hydrogels was 5.56 MPa, 16.13 times that of non-ionic crosslinked hydrogels. The results of ionic conductivity measurements showed that hydrogels had significant ionic conductivity and were sensitive to external forces. Interestingly, the hydrogel can be used as a capacitive pen in mobile phone writing, painting and dialing numbers. Moreover, ionic cross-linked hydrogels had a unique three-dimensional porous structure with gradient distribution, excellent shape memory effect, and good biocompatibility. Fe3+, Ba2+, Sr2+, and Ca2+ cross-linked hydrogels were nontoxic and conducive to the adhesion and growth of Schwann cells. These excellent properties of ionic cross-linked SA/AKP/PAM hydrogels have broad applications prospects in flexible electronic devices, sensors, soft electronic skins, and tissue engineering.


Assuntos
Euphausiacea , Hidrogéis , Resinas Acrílicas , Alginatos/química , Animais , Condutividade Elétrica , Hidrogéis/química , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA