Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Genet Metab ; 116(3): 215-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26432670

RESUMO

Hypophosphatasia (HPP) is a rare inherited skeletal dysplasia due to loss of function mutations in the ALPL gene. The disease is subject to an extremely high clinical heterogeneity ranging from a perinatal lethal form to odontohypophosphatasia affecting only teeth. Up to now genetic diagnosis of HPP is performed by sequencing the ALPL gene by Sanger methodology. Osteogenesis imperfecta (OI) and campomelic dysplasia (CD) are the main differential diagnoses of severe HPP, so that in case of negative result for ALPL mutations, OI and CD genes had often to be analyzed, lengthening the time before diagnosis. We report here our 18-month experience in testing 46 patients for HPP and differential diagnosis by targeted NGS and show that this strategy is efficient and useful. We used an array including ALPL gene, genes of differential diagnosis COL1A1 and COL1A2 that represent 90% of OI cases, SOX9, responsible for CD, and 8 potentially modifier genes of HPP. Seventeen patients were found to carry a mutation in one of these genes. Among them, only 10 out of 15 cases referred for HPP carried a mutation in ALPL and 5 carried a mutation in COL1A1 or COL1A2. Interestingly, three of these patients were adults with fractures and/or low BMD. Our results indicate that HPP and OI may be easily misdiagnosed in the prenatal stage but also in adults with mild symptoms for these diseases.


Assuntos
Hipofosfatasia/diagnóstico , Hipofosfatasia/genética , Adulto , Idoso , Displasia Campomélica/diagnóstico , Pré-Escolar , Diagnóstico Diferencial , Feminino , Feto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipofosfatasia/fisiopatologia , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Osteogênese Imperfeita/diagnóstico , Desmineralização do Dente/congênito , Desmineralização do Dente/fisiopatologia
2.
Metabolism ; 57(7): 903-10, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18555830

RESUMO

Hemochromatosis is a known cause of osteoporosis in which the pathophysiology of bone loss is largely unknown and the role of iron remains questionable. We have investigated the effects of iron on the growth of hydroxyapatite crystals in vitro on carboxymethylated poly(2-hydroxyethyl methacrylate) pellets. This noncellular and enzyme-independent model mimics the calcification of woven bone (composed of calcospherites made of hydroxyapatite crystals). Polymer pellets were incubated with body fluid containing iron at increasing concentrations (20, 40, 60 micromol/L). Hydroxyapatite growth was studied by chemical analysis, scanning electron microscopy, and Raman microscopy. When incubated in body fluid containing iron, significant differences were observed with control pellets. Iron was detected at a concentration of 5.41- to 7.16-fold that of controls. In pellets incubated with iron, there was a approximately 3- to 4-fold decrease of Ca and P and a approximately 1.3- to 1.4-fold increase in the Ca/P ratio. There was no significant difference among the iron groups of pellets, but a trend to a decrease of Ca with the increase of iron concentration was noted. Calcospherite diameters were significantly lower on pellets incubated with iron. Raman microspectroscopy showed a decrease in crystallinity (measured by the full width of the half height of the 960 Deltacm(-1) band) with a significant increase in carbonate substitution (measured by the intensity ratio of 1071 to 960 Deltacm(-1) band). Energy dispersive x-ray analysis identified iron in the calcospherites. In vitro, iron is capable to inhibit bone crystal growth with significant changes in crystallinity and carbonate substitution.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Ferro/química , Líquidos Corporais/química , Cálcio/química , Carbonatos/química , Cristalização , Microscopia Eletrônica de Varredura , Poli-Hidroxietil Metacrilato , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA