Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2307129120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844247

RESUMO

The ability of echolocating toothed whales to detect and classify prey at long ranges enables efficient searching and stalking of sparse prey in these time-limited dives. However, nonecholocating deep-diving seals such as elephant seals appear to have much less sensory advantage over their prey. Both elephant seals and their prey rely on visual and hydrodynamic cues that may be detectable only at short ranges in the deep ocean, leading us to hypothesize that elephant seals must adopt a less efficient reactive mode of hunting that requires high prey densities. To test that hypothesis, we deployed high-resolution sonar and movement tags on 25 females to record simultaneous predator and prey behavior during foraging interactions. We demonstrate that elephant seals have a sensory advantage over their prey that allows them to potentially detect prey 5 to 10 s before striking. The corresponding prey detection ranges of 7 to 17 m enable stealthy approaches and prey-specific capture tactics. In comparison, prey react at a median range of 0.7 m, close to the neck extension range of striking elephant seals. Estimated search swathes of 150 to 900 m2 explain how elephant seals can locate up to 2,000 prey while swimming more than 100 km per day. This efficient search capability allows elephant seals to subsist on prey densities that are consonant with the deep scattering layer resources estimated by hydroacoustic surveys but which are two orders of magnitude lower than the prey densities needed by a reactive hunter.


Assuntos
Comportamento Predatório , Focas Verdadeiras , Animais , Feminino , Comportamento Alimentar , Movimento , Natação , Cetáceos
2.
JASA Express Lett ; 1(1): 016004, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36154091

RESUMO

Fishing boats produce acoustic cues while hauling longlines. These acoustic signals are known to be used by odontocetes to detect the fishing activity and to depredate. However, very little is known about potential interactions before hauling. This article describes the acoustic signature of the setting activity. Using passive acoustic recorders attached to the buoys of longlines, this work demonstrates an increase in the ambient sound of ∼6 dB re 1 µPa2 Hz-1 within 2-7 kHz during the setting activity. This could also be used as an acoustic cue by depredating species, suggesting that predators can detect longlines as soon as they are set.

3.
Ambio ; 49(1): 173-186, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31055794

RESUMO

Toothed whales (odontocetes) feeding on fish caught on hooks in longline fisheries is a growing issue worldwide. The substantial impacts that this behaviour, called depredation, can have on the fishing economy, fish stocks and odontocetes populations, raise a critical need for mitigation solutions to be developed. However, information on when, where and how odontocete depredation occurs underwater is still limited, especially in demersal longline fisheries (fishing gear set on the seafloor). In the present study, we investigated depredation by killer whales (Orcinus orca) and sperm whales (Physeter macrocephalus) on demersal longlines in the French Patagonian toothfish fishery (Southern Ocean). Using a combination of animal-borne behavioural and longline-attached data loggers, we demonstrated that both species are able to depredate longlines on the seafloor. This study, therefore, suggests that odontocetes whales-longline interaction events at depth may be unrecorded when assessing depredation rates from surface observations during hauling phases only. This result has implications for the management of fisheries facing similar depredation issues as underestimated depredation rates may result in unaccounted fish mortality in fish-stock assessments. Therefore, while further research should be conducted to assess the extent of deep-sea whale-longline interaction events during soaking, the evidence that depredation can occur at any time during the whole fishing process as brought out by this study should be considered in future developments of mitigation solutions to the issue.


Assuntos
Cachalote , Baleias , Animais , Comportamento Animal , Pesqueiros
4.
Sci Rep ; 9(1): 1904, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760725

RESUMO

The emergence of longline fishing around the world has been concomitant with an increase in depredation-interactions by odontocete whales (removal of fish caught on hooks), resulting in substantial socio-economic and ecological impacts. The extent, trends and underlying mechanisms driving these interactions remain poorly known. Using long-term (2003-2017) datasets from seven major Patagonian toothfish (Dissostichus eleginoides) longline fisheries, this study assessed the levels and inter-annual trends of sperm whale (Physeter macrocephalus) and/or killer whale (Orcinus orca) interactions as proportions of fishing time (days) and fishing area (spatial cells). The role of fishing patterns in explaining between-fisheries variations of probabilities of odontocete interactions was investigated. While interaction levels remained globally stable since the early 2000s, they varied greatly between fisheries from 0 to >50% of the fishing days and area. Interaction probabilities were influenced by the seasonal concentration of fishing effort, size of fishing areas, density of vessels, their mobility and the depth at which they operated. The results suggest that between-fisheries variations of interaction probabilities are largely explained by the extent to which vessels provide whales with opportunities for interactions. Determining the natural distribution of whales will, therefore, allow fishers to implement better strategies of spatio-temporal avoidance of depredation.


Assuntos
Pesqueiros , Cachalote/fisiologia , Orca/fisiologia , Animais , Oceano Atlântico , Oceano Índico , Modelos Teóricos , Estações do Ano
5.
PLoS One ; 10(9): e0137340, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398528

RESUMO

In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.


Assuntos
Migração Animal , Tartarugas/fisiologia , Animais , Oceano Atlântico , Mergulho , Ecossistema , Feminino , Herbivoria , Hidrodinâmica , Comportamento de Nidação , Rios
6.
J Wildl Dis ; 38(4): 846-50, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12528456

RESUMO

This study is the first to compare the anesthetic effects of two cyclohexamines on free-ranging subantarctic fur seal (Arctocephalus tropicalis) females. From April to July 1999, 107 females were immobilized for tooth extraction and blood sampling, using either ketamine (Ketalar, n = 58) alone or tiletamine-zolazepam (Zoletil 100, n = 49) mixture. Animals were injected intramuscularly at mean doses of 2.1 mg/kg for ketamine and 1.1 mg/kg for tiletamine-zolazepam mixture. Individual response to both drugs was highly variable. The dosage required to achieve a satisfactory level of anesthesia was smaller for subantarctic fur seals than for most other species of seals and was less for animals in better body condition. Few side effects were observed during the trials, aside from mild tremors caused by ketamine, and respiratory depression or prolonged apnea caused by tiletamine-zolazepam. We recommend use of ketamine, especially by those with little experience in anesthesia of fur seals. However, precautionary measures should be taken, such as using low doses for animals in good body condition and being prepared for anesthetic emergencies to avoid any casualties.


Assuntos
Anestésicos Combinados , Anestésicos Dissociativos , Otárias/fisiologia , Ketamina , Tiletamina , Zolazepam , Anestésicos Combinados/administração & dosagem , Anestésicos Combinados/efeitos adversos , Anestésicos Dissociativos/administração & dosagem , Anestésicos Dissociativos/efeitos adversos , Animais , Regiões Antárticas , Ansiolíticos/administração & dosagem , Ansiolíticos/efeitos adversos , Apneia/induzido quimicamente , Apneia/veterinária , Benzodiazepinas , Relação Dose-Resposta a Droga , Feminino , Otárias/cirurgia , Imobilização , Injeções Intramusculares/veterinária , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Respiração/efeitos dos fármacos , Tiletamina/administração & dosagem , Tiletamina/efeitos adversos , Extração Dentária/veterinária , Tremor/induzido quimicamente , Tremor/veterinária , Zolazepam/administração & dosagem , Zolazepam/efeitos adversos
7.
PLoS One ; 9(3): e88503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603534

RESUMO

Predicting how climatic variations will affect marine predator populations relies on our ability to assess foraging success, but evaluating foraging success in a marine predator at sea is particularly difficult. Dive metrics are commonly available for marine mammals, diving birds and some species of fish. Bottom duration or dive duration are usually used as proxies for foraging success. However, few studies have tried to validate these assumptions and identify the set of behavioral variables that best predict foraging success at a given time scale. The objective of this study was to assess if foraging success in Antarctic fur seals could be accurately predicted from dive parameters only, at different temporal scales. For this study, 11 individuals were equipped with either Hall sensors or accelerometers to record dive profiles and detect mouth-opening events, which were considered prey capture attempts. The number of prey capture attempts was best predicted by descent and ascent rates at the dive scale; bottom duration and descent rates at 30-min, 1-h, and 2-h scales; and ascent rates and maximum dive depths at the all-night scale. Model performances increased with temporal scales, but rank and sign of the factors varied according to the time scale considered, suggesting that behavioral adjustment in response to prey distribution could occur at certain scales only. The models predicted the foraging intensity of new individuals with good accuracy despite high inter-individual differences. Dive metrics that predict foraging success depend on the species and the scale considered, as verified by the literature and this study. The methodology used in our study is easy to implement, enables an assessment of model performance, and could be applied to any other marine predator.


Assuntos
Mergulho/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Comportamento Predatório/fisiologia , Animais , Regiões Antárticas , Otárias/fisiologia , Modelos Biológicos , Oceanos e Mares , Reprodutibilidade dos Testes , Fatores de Tempo
8.
PLoS One ; 7(4): e32026, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505993

RESUMO

Identifying individual factors affecting life-span has long been of interest for biologists and demographers: how do some individuals manage to dodge the forces of mortality when the vast majority does not? Answering this question is not straightforward, partly because of the arduous task of accurately estimating longevity in wild animals, and of the statistical difficulties in correlating time-varying ecological covariables with a single number (time-to-event). Here we investigated the relationship between foraging strategy and life-span in an elusive and large marine predator: the Southern Elephant Seal (Mirounga leonina). Using teeth recovered from dead males on îles Kerguelen, Southern Ocean, we first aged specimens. Then we used stable isotopic measurements of carbon (δ13C) in dentin to study the effect of foraging location on individual life-span. Using a joint change-point/survival modelling approach which enabled us to describe the ontogenetic trajectory of foraging, we unveiled how a stable foraging strategy developed early in life positively covaried with longevity in male Southern Elephant Seals. Coupled with an appropriate statistical analysis, stable isotopes have the potential to tackle ecological questions of long standing interest but whose answer has been hampered by logistic constraints.


Assuntos
Comportamento Alimentar/fisiologia , Longevidade/fisiologia , Comportamento Predatório/fisiologia , Focas Verdadeiras/fisiologia , Animais , Isótopos de Carbono/análise , Dentina/química , Ecossistema , Vida , Masculino , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA