Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232822

RESUMO

Cell cultures aiming at tissue regeneration benefit from scaffolds with physiologically relevant elastic moduli to optimally trigger cell attachment, proliferation and promote differentiation, guidance and tissue maturation. Complex scaffolds designed with guiding cues can mimic the anisotropic nature of neural tissues, such as spinal cord or brain, and recall the ability of human neural progenitor cells to differentiate and align. This work introduces a cost-efficient gelatin-based submicron patterned hydrogel-fiber composite with tuned stiffness, able to support cell attachment, differentiation and alignment of neurons derived from human progenitor cells. The enzymatically crosslinked gelatin-based hydrogels were generated with stiffnesses from 8 to 80 kPa, onto which poly(ε-caprolactone) (PCL) alignment cues were electrospun such that the fibers had a preferential alignment. The fiber-hydrogel composites with a modulus of about 20 kPa showed the strongest cell attachment and highest cell proliferation, rendering them an ideal differentiation support. Differentiated neurons aligned and bundled their neurites along the aligned PCL filaments, which is unique to this cell type on a fiber-hydrogel composite. This novel scaffold relies on robust and inexpensive technology and is suitable for neural tissue engineering where directional neuron alignment is required, such as in the spinal cord.


Assuntos
Hidrogéis , Neuritos , Gelatina/farmacologia , Humanos , Hidrogéis/farmacologia , Neuritos/fisiologia , Neurônios , Poliésteres , Engenharia Tecidual , Alicerces Teciduais
2.
J Biomed Mater Res A ; 103(11): 3625-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25851039

RESUMO

Ceramics are known to be chemically stable, and the possibility to electrically dope polymer-derived ceramics makes it a material of interest for implantable electrode applications. We investigated cytotoxic characteristics of four polymer-derived ceramic candidates with either electrically conductive or insulating properties. Cytotoxicity was assessed by culturing C2C12 myoblast cells under two conditions: by exposing them to material extracts and by putting them directly in contact with material samples. Cell spreading was optically evaluated by comparing microscope observations immediately after the materials insertion and after 24 h culturing. Cell viability (MTT) and mortality (LDH) were quantified after 24-h incubation in contact with the materials. Comparison was made with biocompatible positive references (alumina, platinum, biocompatible stainless steel 1.4435), negative references (latex, stainless steel 1.4301) and controls (no material present in the culture wells). We found that the cytotoxic properties of tested ceramics are comparable to established reference materials. These ceramics, which are reported to be very stable, can be microstructured and electrically doped to a wide range of conductivity and are thus excellent candidates for implantable electrode applications including pacemakers.


Assuntos
Cerâmica/farmacologia , Teste de Materiais/métodos , Marca-Passo Artificial , Polímeros/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletrodos , L-Lactato Desidrogenase/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA