Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chem Soc Rev ; 53(8): 4086-4153, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38465517

RESUMO

Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.


Assuntos
Materiais Biocompatíveis , Elastômeros , Medicina Regenerativa , Engenharia Tecidual , Humanos , Elastômeros/química , Materiais Biocompatíveis/química , Animais
2.
Small ; 19(19): e2207057, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775954

RESUMO

Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.


Assuntos
Antibacterianos , Antioxidantes , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Cicatrização , Estresse Oxidativo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
3.
Angew Chem Int Ed Engl ; 59(35): 15199-15203, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32424859

RESUMO

The chemical structures and topologies of the crosslinks in supramolecular networks play a crucial role in their properties and functions. Herein, the preparation of a type of poly(N-isopropylacrylamide) (PNIPAAM)-based supramolecular networks crosslinked by emissive hexagonal metallacycles is presented. The topological connections in these networks greatly affect their properties, as evidenced by their differences in absorption, emission, lower critical solution temperature, and modulus along with the variation of crosslinking densities. The integration of PNIPAAM and metallacycles in the networks benefits them improved bioavailability, making them serve as reagents for bacterial imaging and killing. This study provides a strategy to prepare cavity-crosslinked polymer networks for antibacterial applications.


Assuntos
Bactérias/química , Polímeros/química
4.
Biomacromolecules ; 19(6): 1764-1782, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29684268

RESUMO

Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Hidrogéis/química , Nanofibras/química , Polímeros/síntese química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Cicatrização
5.
Biomacromolecules ; 18(9): 2808-2819, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28792734

RESUMO

The key factor in skeletal muscle tissue engineering is regeneration of the functional skeletal muscles. Materials that could promote the myoblast proliferation and myogenic differentiation are promising candidates in skeletal muscle tissue engineering. Herein, we developed an elastic conductive poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS) grafted aniline pentamer (AP) copolymer that could promote the formation of myotubes by differentiating the C2C12 myoblast cells. The results of hydration behavior and water contact angle suggested that by adjusting the poly(ethylene glycol) (PEG) and AP content, this film showed a proper surface hydrophilicity for cell attachment. Additionally, these films showed tunable conductivity and mechanical properties that can be altered by changing the AP content. The maximum conductivity of the films was 1.84 × 10-4 S/cm and the Young's modulus of these films ranged from 14.58 ± 1.35 MPa to 24.62 ± 0.61 MPa. Our findings indicate that the PEGS-AP films promote the proliferation and myogenic differentiation of C2C12 cells, suggesting that they are promising biomaterials for skeletal muscle tissue engineering.


Assuntos
Mioblastos Esqueléticos/citologia , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Compostos de Anilina/química , Animais , Linhagem Celular , Módulo de Elasticidade , Condutividade Elétrica , Camundongos , Desenvolvimento Muscular , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/fisiologia , Poliésteres/química , Alicerces Teciduais/efeitos adversos
6.
Nat Protoc ; 18(11): 3322-3354, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758844

RESUMO

Double-network hydrogels can be tuned to have high mechanical strength, stability, elasticity and bioresponsive properties, which can be combined to create self-healing, adhesive and antibacterial wound dressings. Compared with single-network hydrogel, double-network hydrogel shows stronger mechanical properties and better stability. In comparison with chemical bonds, the cross-linking in double networks makes them more flexible than single-network hydrogels and capable of self-healing following mechanical damage. Here, we present the stepwise synthesis of physical double-network hydrogels where hydrogen bonds and coordination reactions provide self-healing, pH-responsive, tissue-adhesive, antioxidant, photothermal and antibacterial properties, and can be removed on demand. We then explain how to carry out physical, chemical and biological characterizations of the hydrogels for use as wound dressings, yet the double-network hydrogels could also be used in different applications such as tissue engineering scaffolds, cell/drug delivery systems, hemostatic agents or in flexible wearable devices for monitoring physiological and pathological parameters. We also outline how to use the double-network hydrogels in vivo as wound dressings or hemostatic agents. The synthesis of the ureido-pyrimidinone-modified gelatin, catechol-modified polymers and the hydrogels requires 84 h, 48 h and 1 h, respectively, whereas the in vivo assays require 3.5 weeks. The procedure is suitable for users with expertise in biomedical polymer materials.


Assuntos
Hemostáticos , Hidrogéis , Hidrogéis/química , Cicatrização , Bandagens , Polímeros , Materiais Biocompatíveis , Antibacterianos/química
7.
Adv Healthc Mater ; 12(10): e2202699, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572412

RESUMO

Cardiovascular diseases (CVDs) have been the leading cause of death worldwide during the past several decades. Cell loss is the main problem that results in cardiac dysfunction and further mortality. Cell therapy aiming to replenish the lost cells is proposed to treat CVDs especially ischemic heart diseases which lead to a big portion of cell loss. Due to the direct injection's low cell retention and survival ratio, cell therapy using biomaterials as cell carriers has attracted more and more attention because of their promotion of cell delivery and maintenance at the aiming sites. In this review, the three main factors involved in cell therapy for myocardial tissue regeneration: cell sources (somatic cells, stem cells, and engineered cells), chemical components of cell carriers (natural materials, synthetic materials, and electroactive materials), and categories of cell delivery materials (patches, microspheres, injectable hydrogels, nanofiber and microneedles, etc.) are systematically summarized. An introduction of the methods including magnetic resonance/radionuclide/photoacoustic and fluorescence imaging for tracking the behavior of transplanted cells in vivo is also included. Current challenges of biomaterials-based cell therapy and their future directions are provided to give both beginners and professionals a clear view of the development and future trends in this area.


Assuntos
Materiais Biocompatíveis , Cardiopatias , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco , Hidrogéis , Engenharia Tecidual/métodos
8.
Expert Opin Drug Deliv ; 20(5): 641-672, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37218585

RESUMO

INTRODUCTION: Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED: This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION: When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Portadores de Fármacos , Polímeros , Liberação Controlada de Fármacos , Temperatura
9.
J Colloid Interface Sci ; 625: 817-830, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35772209

RESUMO

The design of conductive hydrogels integrating anti-fatigue, high sensitivity, strong mechanical property and good sterilization performance remains a challenge. We innovatively introduced metal coordination in covalently crosslinked Pluronic F-127 micelle network and synthesized nanocomposite conductive tough hydrogel through the combination of covalent crosslinking, metal coordination and silver nanowire reinforcement. Compared with pure diacylated PF127 hydrogel (PF127), the tensile strength of PF-AA-AM-Al3+/Ag0.25 hydrogel reaching 1.4 MPa was about 10 times than that of PF127. The toughness of PF-AA-AM-Al3+/Ag0.25 reaches 1.88 MJ/m3. Compared with PF-AA-AM-Al3+, the introduction of silver nanowires increased the fatigue life of PF-AA-AM-Al3+/Ag0.25 by 200% (31837 cycles), 170% (12804 cycles) and 1022% (511 cycles) under 100%, 120% and 150% ultimate tensile strains, respectively. Besides, the PF-AA-AM-Al3+/Ag0.25 showed strain sensitivity to small deformation (Gauge factor = 2.42) in wearable tests on hands and knees. In addition, the PF-AA-AM-Al3+/Ag0.25 had good cytocompatibility and antibacterial performance that bacteria killing ratio of 98% to S. aureus and 99% to E. coli. Finally, a viscoelastic numerical constitutive model was established based on finite element method to study the damage failure history of the material. Comparative analysis showed that local stress concentration was the main factor leading to the failure of hydrogel.


Assuntos
Micelas , Poloxâmero , Condutividade Elétrica , Escherichia coli , Humanos , Hidrogéis , Nanogéis , Prata , Staphylococcus aureus
10.
ACS Nano ; 16(8): 13022-13036, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35921085

RESUMO

Burns are a common health problem worldwide and are highly susceptible to bacterial infections that are difficult to handle with ordinary wound dressings. Therefore, burn wound repair is extremely challenging in clinical practice. Herein, a series of self-healing hydrogels (QCS/OD/TOB/PPY@PDA) with good electrical conductivity and antioxidant activity were prepared on the basis of quaternized chitosan (QCS), oxidized dextran (OD), tobramycin (TOB), and polydopamine-coated polypyrrole nanowires (PPY@PDA NWs). These Schiff base cross-links between the aminoglycoside antibiotic TOB and OD enable TOB to be slowly released and responsive to pH. Interestingly, the acidic substances during the bacteria growth process can induce the on-demand release of TOB, avoiding the abuse of antibiotics. The antibacterial results showed that the QCS/OD/TOB/PPY@PDA9 hydrogel could kill high concentrations of Pseudomonas aeruginosa (PA), Staphylococcus aureus, and Escherichia coli in a short time and showed a bactericidal effect for up to 11 days in an agar plate diffusion experiment, while showing good in vivo antibacterial activity. Excellent and long-lasting antibacterial properties make it suitable for severely infected wounds. Furthermore, the incorporation of PPY@PDA endowed the hydrogel with near-infrared (NIR) irradiation assisted bactericidal activity of drug-resistant bacteria, conductivity, and antioxidant activity. Most importantly, in the PA-infected burn wound model, the QCS/OD/TOB/PPY@PDA9 hydrogel more effectively controlled wound inflammation levels and promoted collagen deposition, vascular generation, and earlier wound closure compared to Tegaderm dressings. Therefore, the TOB smart release hydrogels with on-demand delivery are extremely advantageous for bacterial-infected burn wound healing.


Assuntos
Queimaduras , Quitosana , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Polímeros/química , Pseudomonas aeruginosa , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Antioxidantes/química , Pirróis/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Queimaduras/tratamento farmacológico , Quitosana/química , Escherichia coli , Cicatrização
11.
Biomater Sci ; 10(5): 1326-1341, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103257

RESUMO

Bone defect repair is one of the most common issues in clinic. Developmental multifunctional scaffolds have become a promising strategy to effectively promote bone defect repair. Here, a series of multifunctional hydrogels that integrate stable mechanical properties, non-swelling property, conductivity, and photothermal antibacterial properties were developed based on gelatin methacrylate (GM), acryloyl-ß-cyclodextrin (Ac-CD), and ß-cyclodextrin (ß-CD)-functionalized reduced graphene oxide (rGO) for skull defect regeneration. Ac-CD was added as a host macromolecule to improve the toughness of the hydrogels. rGO was selected as the conductive element to endow the hydrogel with conductive properties, and the ß-CD unit in rGO allowed rGO to interact with GM to improve the dispersity of rGO. In vitro/in vivo studies confirmed that the GM/Ac-CD/rGO hydrogel had good biocompatibility and simultaneously promoted the proliferation and osteogenic differentiation of MC3T3-E1 cells, and further accelerated in vivo bone defect repair in a rat skull defect model. Moreover, two-photon laser scanning microscopy (TPLSM) was used for the first time to evaluate bone defect repair by exploring the collagen and mineralized structure directly in bone defect specimens. In short, these multifunctional hydrogels have shown promising applications in bone tissue formation and further accelerate bone defect repair, indicating their great potential for clinical application.


Assuntos
Osso e Ossos , Osteogênese , Animais , Regeneração Óssea , Gelatina/química , Hidrogéis/química , Nanogéis , Ratos , Alicerces Teciduais/química
12.
Adv Healthc Mater ; 11(13): e2102749, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35426232

RESUMO

Conventional wound closure and dressing are two crucial, time-consuming but isolated principles in wound care. Even though tissue adhesive opens a new era for wound closure, the method and biomaterial that can simultaneously achieve noninvasive wound closure and promote wound healing are highly appreciated. Herein, a novel supramolecular poly(N-isopropylacrylamide) hybrid hydrogel dressing composed of quaternized chitosan-graft-ß-cyclodextrin, adenine, and polypyrrole nanotubes via host-guest interaction and hydrogen bonds is developed. The hydrogel demonstrates thermal contraction of 47% remaining area after 2 h at 37 â„ƒ and tissue adhesion of 5.74 kPa, which are essential for noninvasive wound closure, and multiple mechanical and biological properties including suitable mechanical properties, self-healing, on-demand removal, antioxidant, hemostasis, and photothermal/intrinsic antibacterial activity (higher 99% killing ratio within 5 min after irradiation). In both full-thickness skin incision and excision wound models, the hydrogel reveals significant wound closure after 24 h post-surgery. In acute and methicillin-resistant Staphylococcus aureus-infected wound and photothermal/intrinsic antibacterial activity assays, wounds treated with the hydrogel demonstrate enhanced wound healing with rapid wound closure rate, mild inflammatory response, advanced angiogenesis, and well-arranged collagen fibers. Altogether, the results indicate the hydrogel is promising in synchronously noninvasive wound closure and enhanced wound healing.


Assuntos
Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Adesivos , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Polímeros , Pirróis , Cicatrização/fisiologia
13.
ACS Appl Mater Interfaces ; 14(37): 41726-41741, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36089750

RESUMO

The on-demand replacement of multifunctional hydrogel wound dressings helps to avoid bacterial colonization, and the on-demand painless peeling of tissue adhesive hydrogels on the wound site remains a major challenge to be solved. In this work, we design and develop a series of multifunctional dynamic Schiff base network hydrogels composed of cystamine-modified hyaluronic acid, benzaldehyde-functionalized poly(ethylene glycol)-co-poly(glycerol sebacate), and polydopamine@polypyrrole nanocomposite (PDA@PPy) with mild on-demand removability to enhance drug-resistant bacteria-infected wound healing. These hydrogels exhibited ideal injectable and self-healing properties, excellent tissue adhesion, in vivo hemostasis, good antioxidation, and conductivity. PDA@PPy inspired by melanin endows hydrogels with excellent antioxidant capacity, UV-blocking ability, and photothermal anti-infection ability. Based on the dynamic oxidation-reduction response of disulfide bonds inspired by the dissociation of the tertiary spatial structure transformation of poly-polypeptide chains, these hydrogels can achieve rapid painless on-demand removal under mild conditions by adding dithiothreitol. These multifunctional hydrogels significantly promoted collagen deposition and angiogenesis in the MRSA-infected full-thickness skin repair experiment. All the results showed that these multifunctional hydrogels with painless on-demand removal property showed great potential in clinical treatment of infected wounds.


Assuntos
Polímeros , Adesivos Teciduais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Bactérias , Bandagens , Benzaldeídos , Colágeno , Cistamina , Decanoatos , Dissulfetos , Ditiotreitol , Glicerol/análogos & derivados , Humanos , Ácido Hialurônico , Hidrogéis/química , Hidrogéis/farmacologia , Melaninas , Polietilenoglicóis , Polímeros/farmacologia , Pirróis , Bases de Schiff , Aderências Teciduais , Raios Ultravioleta , Cicatrização
14.
Acta Biomater ; 152: 157-170, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100176

RESUMO

Nephron-sparing surgery is a well-established treatment in patients with T1a renal cell carcinoma; however, the complex suturing process prolongs warm ischaemia time, affects the preservation of normal renal parenchymal function, and causes avoidable postoperative tissue adhesion complications, including chronic abdominal pain, intestinal obstruction, and female infertility. Hence, the design of multifunctional biomaterials with haemostasis, postoperative wound management, and postoperative tissue adhesion prevention properties for nephron-sparing surgeries is urgently needed. In this study, a series of injectable adhesive multifunctional biocompatible hydrogels were designed based on the free-radical polymerisation of monomers acryloyl-6-aminocaproic acid (AA) and N-acryloyl 2-glycine (NAG), and the ionic coordination between Ca2+ and the abundant carboxyl groups in AA and NAG. AA/NAG/Ca (AA, NAG, and Ca refer to acryloyl-6-aminocaproic acid, N-acryloyl 2-glycine and calcium chloride, respectively) hydrogel exhibited good mechanical properties, swelling and adhesion properties, flexibility, in vitro blood-clotting ability, and cytocompatibility. In vivo experiments on liver injury models and rat/rabbit nephron-sparing surgery models elucidated that the AA/NAG/Ca hydrogel had haemostasis performance and wound healing properties that led to short bleeding time, reduced bleeding volume, and well-organised nephron structures. An abdomen-caecum adhesion model indicated that the AA/NAG/Ca hydrogel showed excellent anti-adhesion properties. In summary, this multifunctional hydrogel exhibited potential for improving haemostasis and wound management in nephron-sparing surgeries, showing potential for clinical application. STATEMENT OF SIGNIFICANCE: Extended warm ischemia time during nephron sparing surgery negatively affected postoperative renal function due to the need for hemostasis at the wound with abundant blood supply, and postoperative wound healing and additional adhesions caused by the surgical procedure deserve attention. Based on the efficient and stable adhesion properties of hydrogels and the ability to promote wound healing. Herein, a series of adhesive self-healing biocompatible hydrogels were prepared based on free-radical polymerization of acryloyl-6-aminocaproic acid (AA) and N-acryloyl 2-glycine (NAG) and the ionic coordination between Ca2+ with the abundant carboxyl groups in AA and NAG. AA/NAG/Ca hydrogel showed hemostasis property in nephron sparing surgery model, promote kidney wound healing, and could perform anti-postoperative adhesion efficacy in an abdomen-caecum adhesion model.


Assuntos
Adesivos , Hidrogéis , Ácido Aminocaproico , Animais , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Cloreto de Cálcio , Feminino , Glicina , Hemostasia , Hidrogéis/química , Hidrogéis/farmacologia , Néfrons/metabolismo , Néfrons/patologia , Coelhos , Ratos , Aderências Teciduais/patologia , Cicatrização
15.
Biofabrication ; 14(3)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35235923

RESUMO

Preparing a micropatterned elastomer film with characteristics that can simulate the mechanical properties, anisotropy, and electroactivity of natural myocardial tissues is crucial in cardiac tissue engineering after myocardial infarction (MI). Therefore, in this study, we developed several elastomeric films with a surface micropattern based on poly (glycerol sebacate) (PGS) and graphene (Gr). These films have sufficient mechanical strength (0.6 ± 0.1-3.2 ± 0.08 MPa) to withstand heartbeats, and the micropatterned structure also satisfies the natural myocardium anisotropy in the transverse and vertical. Moreover, Gr makes these films conductive (up to 5.80 × 10-7S m-1), which is necessary for the conduction of electrical signals between cardiomyocytes and the cardiac tissue. Furthermore, they have good cytocompatibility and can promote cell proliferation in H9c2 rat cardiomyocyte cell lines.In vivotest results indicate that these films have good biocompatibility. Notably, a film with 1 wt% Gr content (PGS-Gr1) significantly affects the recovery of myocardial function in rats after MI. This film effectively decreased the infarct size and degree of myocardial fibrosis and reduced collagen deposition. Echocardiographic evaluation showed that after treatment with this film, the left ventricular internal dimension (LVID) in systole and LVID in diastole of rats exhibited a significant downward trend, whereas the fractional shortening and ejection fraction were significantly increased compared with the control group. These data indicate that this electroactive micropatterned anisotropic elastomer film can be applied in cardiac tissue engineering.


Assuntos
Grafite , Infarto do Miocárdio , Animais , Decanoatos/química , Elastômeros/química , Glicerol/química , Frequência Cardíaca , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
Nat Rev Chem ; 5(11): 773-791, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-37117664

RESUMO

Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. The first step in wound healing is haemostasis, and the development of haemostatic materials that aid wound healing has accelerated in the past 5 years. Numerous haemostatic materials have been fabricated, composed of different active components (including natural polymers, synthetic polymers, silicon-based materials and metal-containing materials) and in various forms (including sponges, hydrogels, nanofibres and particles). In this Review, we provide an overview of haemostatic materials in wound healing, focusing on their chemical design and operation. We describe the physiological process of haemostasis to elucidate the principles that underpin the design of haemostatic wound dressings. We also highlight the advantages and limitations of the different active components and forms of haemostatic materials. The main challenges and future directions in the development of haemostatic materials for wound healing are proposed.


Assuntos
Hemostáticos , Hemostáticos/farmacologia , Cicatrização , Bandagens , Polímeros , Hemostasia
17.
ACS Appl Bio Mater ; 4(8): 5926-5943, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006922

RESUMO

Shape-memory and self-healing polymers have been a hotspot of research in the field of smart polymers in the past decade. Under external stimulation, shape-memory and self-healing polymers can complete programed shape transformation, and they can spontaneously repair damage, thereby extending the life of the materials. In this review, we focus on the progress in polymers with shape-memory and self-healing properties in the past decade. The physical or chemical changes in the materials during the occurrence of shape memory as well as self-healing were analyzed based on the polymer molecular structure. We classified the polymers and discussed the preparation methods for shape-memory and self-healing polymers based on the dynamic interactions which can make the polymers exhibit self-healing properties including dynamic covalent bonds (DA reaction, disulfide exchange reaction, imine exchange reaction, alkoxyamine exchange reaction, and boronic acid ester exchange reaction) and dynamic noncovalent interactions (crystallization, hydrogen bonding, ionic interaction, metal coordination interaction, host-guest interactions, and hydrophobic interactions) and their corresponding triggering conditions. In addition, we discussed the advantages and the mechanism that the shape-memory property promotes self-healing in polymers, as well as the future trends in shape-memory and self-healing polymers.


Assuntos
Polímeros , Ligação de Hidrogênio , Estrutura Molecular , Polímeros/química
18.
Theranostics ; 11(16): 7948-7969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335973

RESUMO

Heart disease is the main cause of death worldwide. Because death of the myocardium is irreversible, it remains a significant clinical challenge to rescue myocardial deficiency. Cardiac tissue engineering (CTE) is a promising strategy for repairing heart defects and offers platforms for studying cardiac tissue. Numerous achievements have been made in CTE in the past decades based on various advanced engineering approaches. 3D bioprinting has attracted much attention due to its ability to integrate multiple cells within printed scaffolds with complex 3D structures, and many advancements in bioprinted CTE have been reported recently. Herein, we review the recent progress in 3D bioprinting for CTE. After a brief overview of CTE with conventional methods, the current 3D printing strategies are discussed. Bioink formulations based on various biomaterials are introduced, and strategies utilizing composite bioinks are further discussed. Moreover, several applications including heart patches, tissue-engineered cardiac muscle, and other bionic structures created via 3D bioprinting are summarized. Finally, we discuss several crucial challenges and present our perspective on 3D bioprinting techniques in the field of CTE.


Assuntos
Bioimpressão/métodos , Miocárdio/metabolismo , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Biônica/métodos , Bioimpressão/tendências , Procedimentos Cirúrgicos Cardíacos/métodos , Coração/fisiologia , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Impressão Tridimensional/tendências , Alicerces Teciduais/química
19.
Biomacromolecules ; 11(4): 855-63, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20201489

RESUMO

Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.


Assuntos
Compostos de Anilina/química , Eletroquímica , Poliésteres/química , Polímeros/química , Varredura Diferencial de Calorimetria , Condutividade Elétrica , Espectroscopia de Ressonância Magnética , Teste de Materiais , Estrutura Molecular , Transição de Fase , Polímeros/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
20.
Biomaterials ; 229: 119584, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704468

RESUMO

Muscle tissues are soft tissues that are of great importance in force generation, body movements, postural support and internal organ function. Muscle tissue injuries would not only result in the physical and psychological pain and disability to the patient, but also become a severe social problem due to the heavy financial burden they laid on the governments. Current treatments for muscle tissue injuries all have their own severe limitations and muscle tissue engineering has been proposed as a promising therapeutic strategy to treat with this problem. Conductive biomaterials are good candidates as scaffolds in muscle tissue engineering due to their proper conductivity and their promotion on muscle tissue formation. However, a review of conductive biomaterials function in muscle tissue engineering, including the skeletal muscle tissue, cardiac muscle tissue and smooth muscle tissue regeneration is still lacking. Here we reviewed the recent progress of conductive biomaterials for muscle regeneration. The recent synthesis and fabrication methods of conductive scaffolds containing conductive polymers (mainly polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene), carbon-based nanomaterials (mainly graphene and carbon nanotube), and metal-based biomaterials were systematically discussed, and their application in a variety of forms (such as hydrogels, films, nanofibers, and porous scaffolds) for different kinds of muscle tissues formation (skeletal muscle, cardiac muscle and smooth muscle) were summarized. Furthermore, the mechanism of how the conductive biomaterials affect the muscle tissue formation was discussed and the future development directions were included.


Assuntos
Materiais Biocompatíveis , Polímeros , Condutividade Elétrica , Humanos , Pirróis , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA