Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 88(17): 9504-13, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24920821

RESUMO

UNLABELLED: Limitations of antiretroviral therapy (ART) include poor patient adherence, drug toxicities, viral resistance, and failure to penetrate viral reservoirs. Recent developments in nanoformulated ART (nanoART) could overcome such limitations. To this end, we now report a novel effect of nanoART that facilitates drug depots within intracellular compartments at or adjacent to the sites of the viral replication cycle. Poloxamer 407-coated nanocrystals containing the protease inhibitor atazanavir (ATV) were prepared by high-pressure homogenization. These drug particles readily accumulated in human monocyte-derived macrophages (MDM). NanoATV concentrations were ∼1,000 times higher in cells than those that could be achieved by the native drug. ATV particles in late and recycling endosome compartments were seen following pulldown by immunoaffinity chromatography with Rab-specific antibodies conjugated to magnetic beads. Confocal microscopy provided cross validation by immunofluorescent staining of the compartments. Mathematical modeling validated drug-endosomal interactions. Measures of reverse transcriptase activity and HIV-1 p24 levels in culture media and cells showed that such endosomal drug concentrations enhanced antiviral responses up to 1,000-fold. We conclude that late and recycling endosomes can serve as depots for nanoATV. The colocalization of nanoATV at endosomal sites of viral assembly and its slow release sped antiretroviral activities. Long-acting nanoART can serve as a drug carrier in both cells and subcellular compartments and, as such, can facilitate viral clearance. IMPORTANCE: The need for long-acting ART is significant and highlighted by limitations in drug access, toxicity, adherence, and reservoir penetrance. We propose that targeting nanoformulated drugs to infected tissues, cells, and subcellular sites of viral replication may improve clinical outcomes. Endosomes are sites for human immunodeficiency virus assembly, and increasing ART concentrations in such sites enhances viral clearance. The current work uncovers a new mechanism by which nanoART can enhance viral clearance over native drug formulations.


Assuntos
Antirretrovirais/farmacocinética , Endossomos/metabolismo , HIV-1/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas , Oligopeptídeos/farmacocinética , Poloxâmero/farmacocinética , Piridinas/farmacocinética , Antirretrovirais/farmacologia , Sulfato de Atazanavir , Transporte Biológico , Células Cultivadas , Proteína do Núcleo p24 do HIV/análise , HIV-1/crescimento & desenvolvimento , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Modelos Teóricos , Oligopeptídeos/farmacologia , Poloxâmero/farmacologia , Piridinas/farmacologia , Cultura de Vírus
2.
Int J Biol Macromol ; : 136110, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343277

RESUMO

In this study, high-amylose starch (HAS) was processed using sulfuric acid-ultrasonic cross-linking to produce high-amylose starch nanocrystals (HASNC). These nanocrystals were used to stabilize Pickering emulsions and assess their effectiveness in encapsulating ß-carotene. Normal starch nanocrystals (NSNC) were prepared similarly for comparison. The HASNC retained key HAS properties, such as heat and enzyme resistance, providing several advantages to HASNC-stabilized emulsions. First, after exposure to 100 °C heat and in vitro tests simulating the mouth and stomach, the HASNC-stabilized emulsions demonstrated significantly greater stability and higher ß-carotene retention compared to the NSNC-stabilized emulsions. This enhanced stability is attributed to the lower gelatinization degree and increased resistance to α-amylase hydrolysis of HASNC, which provides stronger steric stabilization of the oil droplets. Second, during in vitro small intestine tests, the greater enzyme resistance of HASNC allowed for the formation of a denser barrier around the oil droplets, effectively preventing lipase and bile salts from contacting the oil droplets. This led to a reduced rate and extent of lipid digestion and facilitated a sustained-release effect. Consequently, HASNC, as a starch-based emulsifier, show great potential as an effective delivery system for the sustained release of bioactive compounds.

3.
Food Funct ; 8(10): 3792-3802, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28960010

RESUMO

The effect of salt concentration on swelling power, rheological properties and saltiness perception of waxy, normal and high amylose maize starch was investigated. The swelling power decreased with increasing salt concentration from 0% to 2.0% among all starch samples. Waxy starch showed the highest swelling power at different salt levels, while high amylose starch showed the least swelling power. The salt addition increased the gelatinization temperature of waxy starch and normal starch from 71.3 °C to 77.1 °C and from 72.3 °C to 78.2 °C. Their storage modulus (G'), loss modulus (G''), and viscosity values at lower salt concentration were greater than those at higher salt concentration. The increasing tan δ of waxy and normal starch against frequency sweep indicated liquid-like behavior, while high amylose starch exhibited decreasing tan δ indicating solid-like behavior as it was difficult to gelatinize. When sensory evaluation was conducted by trained panelists, it was found that high amylose starch displayed the highest initial saltiness and in-mouth saltiness intensity, accompanied by the greatest thickness, lubrication and stickiness, while waxy starch displayed the lowest values for saltiness perception and mouthfeel.


Assuntos
Amilose/química , Zea mays/química , Adulto , Feminino , Humanos , Masculino , Reologia , Cloreto de Sódio na Dieta/análise , Amido/química , Paladar , Temperatura , Viscosidade , Difração de Raios X , Adulto Jovem
4.
J Acquir Immune Defic Syndr ; 74(3): e75-e83, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559685

RESUMO

BACKGROUND: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2',3'-dideoxy-3'-thiacytidine, 3TC). METHODS: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. RESULTS: A stable drug formulation was produced by poloxamer encasement that improved monocyte-macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. CONCLUSIONS: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/farmacocinética , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/farmacocinética , Lamivudina/farmacologia , Lamivudina/farmacocinética , Poloxâmero/síntese química , Animais , Fármacos Anti-HIV/síntese química , Preparações de Ação Retardada/síntese química , Portadores de Fármacos/síntese química , Humanos , Lamivudina/síntese química , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA