Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 53, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782198

RESUMO

PURPOSE: Vulvovaginal candidiasis (VVC) is a mucosal infection of the female lower genital tract for which treatment using conventional antifungal drugs shows limited effectiveness. Herein, amphotericin B-loaded poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) nanoparticles (AmB-NPs) were fabricated and combined with low intensity ultrasound (US) to mediate AmB-NPs intravaginal drug delivery to achieve productive synergistic antifungal activity in a rabbit model of VVC. METHODS: Polymeric AmB-NPs were fabricated by a double emulsion method and the physical characteristics and biosafety of nanoparticles were analyzed. The distribution and tissue permeability of nanoparticles after intravaginal ultrasound irradiation (1.0 MHz, 1.0 W/cm2, 5 min, 50% duty ratio) were observed in the vagina. The synergistic therapeutic activity of US-mediated AmB-NPs treatment was evaluated using an experimental rabbit model of VVC. Vaginal C. albicans colony counts, the pathological structure of the vagina epithelium, and Th1/Th2/Th17-type cytokine and oxidative stress levels were analyzed to investigate the therapeutic effect in vivo. RESULTS: The prepared AmB-NPs showed an obvious shell and core structure with uniform size and good dispersion and displayed high biosafety and US-sensitive slow drug release. Ultrasound significantly enhanced nanoparticle transport through the mucus and promoted permeability in the vaginal tissue. US-mediated AmB-NPs treatment effectively increased drug sensitivity, even in the presence of the vaginal mucus barrier in vitro. On the seventh day after treatment in vivo, the combination treatment of AmB-NPs and US significantly reduced the fungal load in the vagina, achieving over 95% clearance rates, and also improved the pathological epithelium structural damage and glycogen secretion function. The expression of Th1 (IFN-γ, IL-2) and Th17 (IL-17) cytokines were significantly increased and Th2 (IL-6, IL-10) cytokines significantly decreased in the US + AmB-NP group. Furthermore, US-mediated AmB-NPs treatment effectively increased C. albicans intracellular reactive oxygen species (ROS) levels and promoted vaginal oxidation and antioxidants to normal levels. CONCLUSION: US-mediated drug-loaded nanoparticles with intravaginal drug delivery exhibited a productive synergistic antifungal effect, which may provide a new non-invasive, safe, and effective therapy for acute or recurrent fungal vaginitis.


Assuntos
Candidíase Vulvovaginal , Nanopartículas , Humanos , Animais , Feminino , Coelhos , Antifúngicos/química , Candidíase Vulvovaginal/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Citocinas , Candida albicans
2.
Int J Nanomedicine ; 18: 7941-7963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169688

RESUMO

Background: Candida albicans (C. albicans) forms pathogenic biofilms, and the dense mucus layer secreted by the epithelium is a major barrier to the traditional antibiotic treatment of mucosa-associated C. albicans infections. Herein, we report a novel anti-biofilm strategy of mucus-permeable sonodynamic therapy (mp-SDT) based on ultrasound (US)-mediated amphotericin B-loaded PEGylated PLGA nanoparticles (AmB-NPs) to overcome mucus barrier and enable the eradication of C. albicans biofilm. Methods: AmB-NPs were fabricated using ultrasonic double emulsion method, and their physicochemical and sonodynamic properties were determined. The mucus and biofilm permeability of US-mediated AmB-NPs were further investigated. Moreover, the anti-biofilm effect of US-mediated AmB-NPs treatment was thoroughly evaluated on mucus barrier abiotic biofilm, epithelium-associated biotic biofilm, and C. albicans-induced rabbit vaginal biofilms model. In addition, the ultrastructure and secreted cytokines of epithelial cells and the polarization of macrophages were analyzed to investigate the regulation of local cellular immune function by US-mediated AmB-NPs treatment. Results: Polymeric AmB-NPs display excellent sonodynamic performance with massive singlet oxygen (1O2) generation. US-mediated AmB-NPs could rapidly transport through mucus and promote permeability in biofilms, which exhibited excellent eradicating ability to C. albicans biofilms. Furthermore, in the vaginal epithelial cells (VECs)-associated C. albicans biofilm model, the mp-SDT scheme showed the strongest biofilm eradication effect, with up to 98% biofilm re-formation inhibition rate, improved the ultrastructural damage, promoted local immune defense enhancement of VECs, and regulated the polarization of macrophages to the M1 phenotype to enhance macrophage-associated antifungal immune responses. In addition, mp-SDT treatment exhibited excellent therapeutic efficacy against C. albicans-induced rabbit vaginitis, promoted the recovery of mucosal epithelial ultrastructure, and contributed to the reshaping of a healthier vaginal microbiome. Conclusion: The synergistic anti-biofilm strategies of mp-SDT effectively eradicated C. albicans biofilm and simultaneously regulated local antifungal immunity enhancement, which may provide a new approach to treat refractory drug-resistant biofilm-associated mucosal candidiasis.


Assuntos
Candidíase , Nanopartículas , Animais , Feminino , Coelhos , Anfotericina B/química , Candida albicans , Antifúngicos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Candidíase/tratamento farmacológico , Polietilenoglicóis/química , Nanopartículas/química , Biofilmes , Muco , Testes de Sensibilidade Microbiana
3.
Int J Pharm ; 552(1-2): 319-327, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308269

RESUMO

Colorectal cancer (CRC) exhibited high incidence rate worldwide and the advanced CRC had a poor prognosis. Thereupon, seeking efficient treatment for CRC is critical. Apatinib is a novel vascular epithelial growth factor receptor (VEGFR) inhibitor with inspiring therapeutic effect in some malignant cancers. In our study, doxorubicin was mixed in fibrin gel and apatinib was encapsulated with self-synthesized liposome. The results showed liposomal apatinib (Lipo-Apatinib) could enhance the intracellular uptake of doxorubicin in vitro. Moreover, compared with doxorubicin loaded fibrin gel (DOX-FG) alone, the combination of DOX-FG and Lipo-Apatinib significantly improved the anti-tumor effect in mice CRC subcutaneous model and abdominal metastasis model Drug combination successfully inhibited tumor angiogenesis and tumor proliferation, and also promoted tumor apoptosis. Our data suggested that combined therapy of DOX-FG and Lipo-Apatinib would be a promising treatment approach for CRC.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Doxorrubicina/administração & dosagem , Fibrina/administração & dosagem , Piridinas/administração & dosagem , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Doxorrubicina/química , Combinação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Fibrina/química , Géis , Lipossomos , Camundongos Endogâmicos BALB C , Piridinas/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA