Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Langmuir ; 37(19): 5776-5782, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33966385

RESUMO

Nonspecific protein adsorption-resistant materials, the so-called nonfouling materials, are crucial biomaterials in biomedical applications. Up-to-date, little attention was paid to the biodegradability of these materials. In this work, nonfouling zwitterionic copolymerized peptides composed of the N-l-glumatyl-l-lysine dimer (EK) and δ-l-lysinyl-l-glutamic acid dimer (E-K, glutamic acid with the lysine side chain) at various ratios were synthesized to investigate the enzymatic degradation rate. Two types of proteases (trypsin and alkaline protease), which represent a site-specific and less site-specific cleavage protease, respectively, were used to demonstrate the adjustable degradability by tracking the molecular weight (Mw) at different digestion times. Results showed that higher compositions of the E-K dimer lead to slower degradation rates by both proteases and larger fragments after 120 min digestion. With the composition of the E-K dimer over 50%, the degradation of copolymerized peptides by both proteases becomes very slow. This indicated that the bulky lysinyl side chain on E-K can alter the enzymolysis process for adjusting the enzymatic degradability of the newly synthesized zwitterionic copolymerized peptides, which could be promising candidates for biomedical applications in vivo.


Assuntos
Ácido Glutâmico , Lisina , Peptídeos , Polímeros , Tripsina
2.
BMC Med Educ ; 20(1): 272, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811485

RESUMO

BACKGROUND: This research aims to investigate the evaluation methods of teaching oral implant clinical courses and estimate the effectiveness of a virtual simulation platform. METHODS: Eighty second- and third-year undergraduates in Lanzhou University were recruited and randomized to either three experimental groups or one control group. The subjects undertook theoretical examinations to test their basic level of knowledge after training in similarly unified knowledge courses. Each student group then participated in an eight-hour operating training session. An operation test on pig mandible was conducted, followed by a second theoretical examination. The assessment consists of three distinct parts: a subjective operating score by a clinical senior teacher, an implant accuracy analysis in cone-beam computed tomography (angular, apical, and entrance deviation), and comparison of the two theoretical examinations. Finally, students completed a questionnaire gauging their understanding of the virtual simulation. RESULTS: There was no significant difference between the four groups in first theoretical examination (P > 0.05); the second theoretical scores of the V-J and J-V group (62.90 ± 3.70, 60.05 ± 2.73) were significantly higher than the first time (57.05 ± 3.92, P < 0.05), while no difference between the V (57.10 ± 3.66) and J (56.89 ± 2.67) groups was found. Thus, the combination of V-J was effective in improving students' theoretical scores. The V-J and J-V groups had higher scores on operation (73.98 ± 4.58, 71.85 ± 4.67) and showed better implant precision. CONCLUSION: Virtual simulation education, especially with a jaw simulation model, could improve students' implantology achievements and training. Currently study found that the V-J group may performed better than the J-V group in oral implant teaching.


Assuntos
Competência Clínica , Avaliação Educacional , Animais , Simulação por Computador , Escolaridade , Humanos , Estudantes , Suínos
3.
Talanta ; 265: 124865, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418960

RESUMO

The reliable and accurate detection of glyphosate is urgently demanded because it is related to food and environmental safety. In this contribution, a PDA-PEI/Cu2+ complex that possesses peroxidase-mimetic activity and stimulus-responsive fluorescence was fabricated by coordinating Cu2+ with polydopamine-polyethyleneimine copolymer dots (PDA-PEI CPDs). With the introduction of Cu2+, the fluorescence intensity of PDA-PEI CPDs dropped sharply owing to the electron transfer effect. As a peroxidase-mimicking nanozyme, the PDA-PEI/Cu2+ complex owns catalytic capacity to oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB, leading a further fluorescence quenching by internal filtering effect by oxTMB. Once the glyphosate participated, the fluorescence signal of PDA-PEI CPDs is recovered significantly because of the formation of more stable Glyp-Cu2+ complexes, meanwhile the peroxidase-mimicking activity of PDA-PEI/Cu2+ complex could be strongly hindered. According to this principle, a novel and extremely convenient 'turn off' colorimetric and 'turn on' fluorescence sensing platform can be established for dual-mode detection of glyphosate. The favorable sensitivity and selectivity and were verified in the analysis of glyphosate in the environment through the marriage of dual-signal sensing platform. The detection limit of the dual-mode glyphosate sensing platform was 103.82 ng/mL for colorimetric assay and 16.87 ng/mL for fluorescent assay, respectively. Satisfactory recoveries in the range of 96.40%-104.66% were obtained, indicating the potential of this method for application in complicated real sample. Thereby, this strategy broadens the applications of polydopamine nanomaterials and holds a promising application in determination of pesticide residues.


Assuntos
Colorimetria , Peroxidases , Peroxidase , Corantes Fluorescentes/química , Polietilenoimina/química , Glifosato
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121224, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397448

RESUMO

Sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) is critical for environmental protection and public health. In this work, a convenient synthesis strategy for preparation of fluorescent PEI-AgNCs was described and further a facile and label-free sensing strategy for detection of TNT was developed. The hyperbranched polyethyleneimine (PEI) were used as template to one-step synthesize functional PEI-AgNCs with bright fluorescence signal and rich amino groups on their surface. PEI can specifically bind to electron-deficient TNT through donor-receptor interaction to form Meissenheimer complex. Interestingly, the absorption spectra of the Meissenheimer complex overlap with the fluorescence emission peak of PEI-AgNCs, thus quenching fluorescence of PEI-Ag NCs through fluorescence resonance energy transfer (FRET). Furthermore, this bonding process also initiate aggregation of PEI-AgNCs and quench the fluorescence of PEI-AgNCs by the aggregation-induced quenching (AIQ) effect. The novel method demonstrates sensitivity with a detection limit for TNT have been obtained as 17 nM. In addition, the proposed sensing method also has good selectivity over other potential interference and displayed a good potential application value in real water samples with satisfactory recoveries, offering a promising platform for sensing TNT in public safety and security environment protection.


Assuntos
Nanopartículas Metálicas , Trinitrotolueno , Corantes Fluorescentes , Polietilenoimina , Prata
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121097, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259707

RESUMO

Butyrylcholinesterase (BChE) is an enzyme which is relevant to a variety of diseases, and often serve as a common biomarker of health. In this work, a novel fluorescence sensor based on redox-regulated synthesis of polydopamine nanoparticles (PDANPs) has been developed for simple and sensitive sensing BChE activity. A facile and rapid one-step approach for the preparation of fluorescent PDANPs uses potassium permanganate to oxidize dopamine. We demonstrated that the fluorescence intensity of PDANPs is dependent on the dose of potassium permanganate. Butyrylcholinesterase catalyzes the hydrolysis of butyrylthiocholine iodide (BTCh) to produce thiolcholine (TCh) which in a redox reaction with potassium permanganate prevents the formation of fluorescent PDANP. As a result, the activity of BChE can be determined in line with changes in the fluorescence of PDANPs. Based on this finding, a convenient and label-free fluorescence sensor for BChE activity was established via redox-control of the fluorescence intensity of PDANPs. A dynamic response range for BChE is acquired within 0.5 âˆ¼ 200 U/L along with a detection limit of 0.047 U/L. Importantly, the proposed method achieves practical application toward BChE in human sera. Moreover, its satisfying performance for screening of inhibitors was also proved. Hence, the proposed sensor holds great potential for cholinesterase-related biomedical investigation.


Assuntos
Butirilcolinesterase , Nanopartículas , Butirilcolinesterase/metabolismo , Corantes Fluorescentes , Humanos , Indóis , Oxirredução , Polímeros , Permanganato de Potássio
6.
J Appl Biomater Funct Mater ; 19: 22808000211037487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34428976

RESUMO

In this study, we aimed to improve the properties of conventional glass ionomer cement (GIC), including mechanical properties, wear resistance, antibacterial properties and biological activity, by adding fluorinated graphene (FG). Composites of synthesised FG and GIC were examined after being combined at different mass proportions (0, 0.5, 1.0 and 2.0 wt%). The microstructure and morphology of FG prepared via the hydrothermal method was characterised using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The FG/GIC composite was obtained through the blending method and characterised using SEM. Then, the Vickers microhardness and the wear property of the FG/GIC composite-imitated brushing was measured. The plate count and dilution methods (10-fold) were adopted to investigate the antibacterial properties of FG/GIC by incubating Escherichia coli and Staphylococcus aureus. The biocompatibility of FG/GIC containing the adhesion and cytotoxicity of mouse fibroblast cells (L929) was estimated by the MTT and acridine orange (AO) fluorescent staining. Our results demonstrated that the hardness and abrasive wear resistance of the composites increased, and the microhardness parameter changes exhibited a gradual increase as the concentration continued to increase. A 2.0 wt% FG concentration could effectively improve the bacterial inhibition performance of GIC and was directly proportional to the concentration of FG. The composite materials showed no apparent cytotoxicity on normal L929 cells compared to the control group, and the materials exhibited no cytotoxic effect compared to traditional GIC. Thus, FG/GIC has potential therapeutic value in the field of dental treatment.


Assuntos
Cimentos de Ionômeros de Vidro , Grafite , Animais , Antibacterianos/farmacologia , Proliferação de Células , Cimentos de Ionômeros de Vidro/farmacologia , Teste de Materiais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA