Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
PLoS Genet ; 20(7): e1011364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39052671

RESUMO

How the dorsal-ventral axis of the vertebrate jaw, particularly the position of tooth initiation site, is established remains a critical and unresolved question. Tooth development starts with the formation of the dental lamina, a localized thickened strip within the maxillary and mandibular epithelium. To identify transcriptional regulatory networks (TRN) controlling the specification of dental lamina from the naïve mandibular epithelium, we utilized Laser Microdissection coupled low-input RNA-seq (LMD-RNA-seq) to profile gene expression of different domains of the mandibular epithelium along the dorsal-ventral axis. We comprehensively identified transcription factors (TFs) and signaling pathways that are differentially expressed along mandibular epithelial domains (including the dental lamina). Specifically, we found that the TFs Sox2 and Tfap2 (Tfap2a/Tfap2b) formed complimentary expression domains along the dorsal-ventral axis of the mandibular epithelium. Interestingly, both classic and novel dental lamina specific TFs-such as Pitx2, Ascl5 and Zfp536-were found to localize near the Sox2:Tfap2a/Tfap2b interface. To explore the functional significance of these domain specific TFs, we next examined loss-of-function mouse models of these domain specific TFs, including the dental lamina specific TF, Pitx2, and the ventral surface ectoderm specific TFs Tfap2a and Tfap2b. We found that disruption of domain specific TFs leads to an upregulation and expansion of the alternative domain's TRN. The importance of this cross-repression is evident by the ectopic expansion of Pitx2 and Sox2 positive dental lamina structure in Tfap2a/Tfap2b ectodermal double knockouts and the emergence of an ectopic tooth in the ventral surface ectoderm. Finally, we uncovered an unappreciated interface of mesenchymal SHH and WNT signaling pathways, at the site of tooth initiation, that were established by the epithelial domain specific TFs including Pitx2 and Tfap2a/Tfap2b. These results uncover a previously unknown molecular mechanism involving cross-repression of domain specific TFs including Pitx2 and Tfap2a/Tfap2b in patterning the dorsal-ventral axis of the mouse mandible, specifically the regulation of tooth initiation site.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox PITX2 , Proteínas de Homeodomínio , Mandíbula , Fatores de Transcrição SOXB1 , Fator de Transcrição AP-2 , Fatores de Transcrição , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Mandíbula/metabolismo , Epitélio/metabolismo , Odontogênese/genética , Dente/metabolismo , Dente/crescimento & desenvolvimento , Dente/embriologia , Redes Reguladoras de Genes , Linhagem da Célula/genética , Transdução de Sinais
2.
Plant Dis ; 107(12): 3843-3850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37272042

RESUMO

Fusarium pseudograminearum is the dominant pathogen causing Fusarium crown rot (FCR) of wheat. Phenamacril is a 2-cyanoacrylate fungicide, having a control effect on diseases caused by Fusarium spp. The objective of this study was to investigate the inhibitory effect of phenamacril on F. pseudograminearum and its control efficacy against FCR. The results showed that phenamacril had a strong inhibitory effect on the mycelial growth of F. pseudograminearum, EC50 values of phenamacril to 63 tested strains were in the range of 0.0998 to 0.5672 µg/ml, and the average EC50 value was 0.3403 ± 0.0872 µg/ml and could be used as the baseline sensitivity of F. pseudograminearum to phenamacril. Phenamacril reduced the germination rate of conidia of F. pseudograminearum, and the EC50 value was 5.0273 to 26.4814 µg/ml. In addition, we found that phenamacril had a teratogenic effect on conidia and blastotubules, which increased the ratio of conidial germination from the middle cells and showed high efficacy on the sporulation quantity of F. pseudograminearum with an EC50 value in the range of 0.0770 to 0.1064 µg/ml. There was no significant correlation between the sensitivity of F. pseudograminearum to phenamacril and its sensitivity to fludioxonil, carbendazim, tebuconazole, and kresoxim-methyl. In vitro and greenhouse assays showed that the treatment with 0.125 µl of active ingredient per gram recorded the best control effect on wheat crown rot, reaching 87.8 and 77.3%, respectively. In two experimental sites in Luoyang, phenamacril also had great control effect against FCR, reaching 83.9%. It was proven that phenamacril has a superior control effect against FCR. This study has laid a foundation for the study of the mechanism of action of phenamacril against F. pseudograminearum and provided a theoretical basis for the application of phenamacril to control FCR.


Assuntos
Fusarium , Triticum , Doenças das Plantas/prevenção & controle , Cianoacrilatos/farmacologia , Crescimento e Desenvolvimento
3.
Cell Mol Bioeng ; 12(1): 85-97, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31719900

RESUMO

INTRODUCTION: Fluid shear stress (FSS) is the most common stress produced by mastication, speech, or tooth movement. However, how FSS regulates human periodontal ligament (PDL) cell proliferation and migration as well as the underlying mechanism remains unknown. METHODS: FSS (6 dyn/cm2) was produced in a flow chamber. Cell proliferation was tested by the 5-ethynyl-2'-deoxyuridine assay. Cell migration was tested by the wound healing assay. Gene and protein expression of platelet-derived growth factors (PDGFs) and matrix metalloproteinase (MMP)-2 were measured by reverse transcription-polymerase chain reaction and western blot analyses. RESULTS: We investigated the effect of 4 h of 6 dyn/cm2 FSS on proliferation and migration of PDL cells. FSS promoted PDL cell proliferation but inhibited migration. The gene and protein expression of PDGF receptor (PDGFR)-α and ß both decreased in response to FSS. Activating and inhibiting the PDGFRs did not affect the FSS-induced increase in cell proliferation. However, activating PDGFRs with PDGF-BB, which bound both PDGFR-α and ß, and PDGF-CC and DD, which had high affinities for PDGFR-α and PDGFR-ß, individually rescued FSS-inhibited migration. FSS also inhibited MMP-2 gene expression, which was the most important factor for matrix turnover and migration of PDLs. PDGF-BB, CC, and DD increased the FSS-induced decline in MMP-2 expression. These results indicate that MMP-2 is regulated by FSS and contributes to the FSS-induced decrease in cell migration. CONCLUSIONS: Our study suggests a role for PDGFR-α and ß in short-term FSS-regulated cell proliferation and migration. These results will help provide the scientific foundation for revealing the mechanisms clinical tooth movement and PDL regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA