Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948419

RESUMO

Polyurethane foams (PUFs) have attracted attention as biomaterials because of their low adhesion to the wound area and suitability as biodegradable or bioactive materials. The composition of the building blocks for PUFs can be controlled with additives, which provide excellent anti-drug resistance and biocompatibility. Herein, nanosized Cu-BTC (copper(II)-benzene-1,3,5-tricarboxylate) was incorporated into a PUF via the crosslinking reaction of castor oil and chitosan with toluene-2,4-diisocyanate, to enhance therapeutic efficiency through the modification of the surface of PUF. The physical and thermal properties of the nanosized Cu-BTC-incorporated PUF (PUF@Cu-BTC), e.g., swelling ratio, phase transition, thermal gravity loss, and cell morphology, were compared with those of the control PUF. The bactericidal activities of PUF@Cu-BTC and control PUF were evaluated against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus. PUF@Cu-BTC exhibited selective and significant antibacterial activity toward the tested bacteria and lower cytotoxicity for mouse embryonic fibroblasts compared with the control PUF at a dose of 2 mg mL-1. The Cu(II) ions release test showed that PUF@Cu-BTC was stable in phosphate buffered saline (PBS) for 24 h. The selective bactericidal activity and low cytotoxicity of PUF@Cu-BTC ensure it is a candidate for therapeutic applications for the drug delivery, treatment of skin disease, and wound healing.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis/química , Cobre/administração & dosagem , Estruturas Metalorgânicas/administração & dosagem , Poliuretanos/química , Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Cobre/farmacologia , Portadores de Fármacos/química , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
2.
Int J Biol Macromol ; 264(Pt 2): 130617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447829

RESUMO

Local antibiotic application might mitigate the burgeoning problem of rapid emergence of antibiotic resistance in pathogenic microbes. To accomplish this, delivery systems must be engineered. Hydrogels have a wide range of physicochemical properties and can mimic the extracellular matrix, rendering them promising materials for local antibacterial agent application. Here, we synthesized antibacterial silicon (Si)-based nickel (Ni) nanoflowers (Si@Ni) and encapsulated them in gelatin methacryloyl (GelMA) using microfluidic and photo-crosslink technology, constructing uniform micro-sized hydrogel spheres (Si@Ni-GelMA). Si@Ni and Si@Ni-GelMA were characterized using X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Injectable Si@Ni-GelMA exhibited excellent antibacterial activities owing to the antibiotic effect of Ni against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus, while showing negligible cytotoxicity. Therefore, the Si@Ni-GelMA system can be used as drug carriers owing to their injectability, visible light-mediated crosslinking, degradation, biosafety, and superior antibacterial properties.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Gelatina/química , Materiais Biocompatíveis/química , Silício , Níquel , Microesferas , Hidrogéis/química , Antibacterianos/farmacologia , Metacrilatos/química , Engenharia Tecidual
3.
Anal Chem ; 83(10): 3957-62, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21500820

RESUMO

Contamination of heparin with oversulfated chondroitin sulfate (OSCS) became a matter of grave concern in the medical field after many fatal responses to OSCS tainted heparin products occurred during the 2007-2008 period. Even though standard lab-based analytical techniques such as nuclear magnetic resonance (NMR) and strong anion-exchange high performance liquid chromatography (SAX-HPLC) have proven useful for monitoring the OSCS content in heparin products, an easy-to-use, quick, portable, and cost-efficient method is still needed for on-site monitoring during and after the heparin production. In this report, a disposable strip-type electrochemical polyion sensor is described for detection of low levels of OSCS contamination in heparin. A magnetic actuator is incorporated into this simple electrode-based microfluidic device in order to create the mixing effect necessary to achieve equilibrium potential changes of the sensor within a microfluidic channel. The planar membrane electrode detector within the sample channel is prepared with a tridodecylmethylammonium chloride (TDMAC)-doped poly(vinyl chloride) (PVC) membrane essentially equivalent to previously reported polyanion-sensitive electrodes. When the concentration of heparin applied to the single-use strip device is 57 mg/mL (in only 20 µL of sample), the same concentration recommended in the NMR analysis protocol for detecting OSCS in heparin, the detection limit is 0.005 wt % of OSCS, which is ca. 20 times lower than the reported detection limit of the NMR method.


Assuntos
Sulfatos de Condroitina/análise , Técnicas Eletroquímicas/métodos , Heparina/química , Eletrodos , Magnetismo , Técnicas Analíticas Microfluídicas/métodos , Polieletrólitos , Polímeros/química , Cloreto de Polivinila/química , Compostos de Amônio Quaternário/química
4.
Sci Rep ; 11(1): 7177, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785778

RESUMO

Cellular therapies based on human pluripotent stem cells (hPSCs) offer considerable promise for treating numerous diseases including diabetes and end stage liver failure. Stem cell spheroids may be cultured in stirred bioreactors to scale up cell production to cell numbers relevant for use in humans. Despite significant progress in bioreactor culture of stem cells, areas for improvement remain. In this study, we demonstrate that microfluidic encapsulation of hPSCs and formation of spheroids. A co-axial droplet microfluidic device was used to fabricate 400 µm diameter capsules with a poly(ethylene glycol) hydrogel shell and an aqueous core. Spheroid formation was demonstrated for three hPSC lines to highlight broad utility of this encapsulation technology. In-capsule differentiation of stem cell spheroids into pancreatic ß-cells in suspension culture was also demonstrated.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/fisiologia , Esferoides Celulares/fisiologia , Reatores Biológicos , Cápsulas/química , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Transplante de Células/métodos , Diabetes Mellitus/terapia , Doença Hepática Terminal/terapia , Humanos , Hidrogéis/química , Células Secretoras de Insulina/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Células-Tronco Pluripotentes/transplante , Polietilenoglicóis/química
5.
Mater Sci Eng C Mater Biol Appl ; 90: 77-84, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853148

RESUMO

In situ hydrogel synthesis based on photopolymerization has been recognized as a promising strategy that can be used for tissue augmentation. In this study, we developed an efficient in situ gelation method to prepare bulk hydrogels via near infrared (NIR)-mediated photopolymerization using acrylated polyethylene glycol and diacrylated Pluronic F127-coated upconversion nanoparticles (UCNPs). In our system, upon 980-nm laser irradiation, UCNPs transmit visible light, which triggers the activation of eosin Y to initiate polymerization. We found that the UCNPs coated with diacrylated Pluronic F127 can enhance the photopolymerization efficiency and thus enable the production of bulk hydrogel with requirement of a lower NIR light power compared to that required with the bare UCNPs. This photopolymerization approach will be beneficial to achieve in situ polymerization in vivo for various biomedical applications such as cell/drug delivery and construction of tissue augments.


Assuntos
Hidrogéis/química , Raios Infravermelhos , Nanopartículas/química , Poloxâmero/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Células NIH 3T3 , Polimerização
6.
Acta Biomater ; 49: 284-295, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27919839

RESUMO

We have developed stem cell-responsive, heparin-hyaluronic acid (Hep-HA) hydrogel, crosslinked by thiolated heparin (Hep-SH) and methacrylated hyaluronic acid (HA-MA) via visible light mediated, thiol-ene reaction. Physical properties of the hydrogel (gelation time, storage modulus, and swelling ratio) were tunable by adjusting light intensity, initiator/polymer concentration, and precursor pH. Culture of human adipose derived mesenchymal stem cells (ADSCs) using this hydrogel was characterized and compared with the control hydrogels including Hep-PEG hydrogel, PEG-HA hydrogel. Sufficient initial adhesion and continuous proliferation of ADSCs in 2D were observed on both heparin-containing hydrogels (Hep-HA and Hep-PEG hydrogel) in contrast to no adhesion of ADSCs on PEG-HA hydrogel. On the other hand, in the case of 3D culture of encapsulated ADSCs, efficient cellular activities such as spreading, proliferation, migration, and differentiation of ADSCs were only observed in soft Hep-HA hydrogel compared to Hep-PEG or PEG-HA hydrogel with the similar modulus. The upregulated expressions of hyaluronidases in ADSCs encapsulated in Hep-HA hydrogel compared to the control hydrogels and effective degradation of the hydrogel by hyaluronidase imply that the degradation of hydrogel was necessary for 3D cellular activities. Thus, Hep-HA hydrogel, where heparin acts as a binding domain for ADSCs and HA acts as a degradation site by cell secreted enzymes, was efficient for 3D culture of human ADSCs without any additional modification using biological/chemical molecules. STATEMENT OF SIGNIFICANCE: Stem cell-responsive hydrogel composed of heparin and hyaluronic acid was prepared by visible light-mediated thiol-ene reaction. Without additional modification using functional peptides for cell adhesion and matrix degradation, ADSCs encapsulated in this hydrogel showed efficient cellular activities such as spreading, proliferation, migration, and differentiation of ADSCs whereas control hydrogels missing heparin or hyaluronic acid could not support cellular activities in 3D. In this hydrogel, heparin mainly acts as a binding domain for stem cells and hyaluronic acid mainly acts as a degradation site by ADSC secreted enzymes, but interrelated synergistic functions of heparin and HA were observed. Therefore, we speculate that this hydrogel can serve as a promising carrier for stem cell based therapy and various tissue engineering applications.


Assuntos
Tecido Adiposo/citologia , Heparina/farmacologia , Ácido Hialurônico/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco/citologia , Adipogenia/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Géis , Concentração de Íons de Hidrogênio , Luz , Teste de Materiais , Fenômenos Mecânicos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA