Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7964): 328-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138083

RESUMO

Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.


Assuntos
Osso e Ossos , DNA Antigo , Dente , Animais , Feminino , Humanos , Arqueologia/métodos , Osso e Ossos/química , Cervos/genética , DNA Antigo/análise , DNA Antigo/isolamento & purificação , DNA Mitocondrial/análise , DNA Mitocondrial/isolamento & purificação , História Antiga , Sibéria , Dente/química , Cavernas , Federação Russa
2.
Nature ; 581(7808): 299-302, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433609

RESUMO

The Middle to Upper Palaeolithic transition in Europe witnessed the replacement and partial absorption of local Neanderthal populations by Homo sapiens populations of African origin1. However, this process probably varied across regions and its details remain largely unknown. In particular, the duration of chronological overlap between the two groups is much debated, as are the implications of this overlap for the nature of the biological and cultural interactions between Neanderthals and H. sapiens. Here we report the discovery and direct dating of human remains found in association with Initial Upper Palaeolithic artefacts2, from excavations at Bacho Kiro Cave (Bulgaria). Morphological analysis of a tooth and mitochondrial DNA from several hominin bone fragments, identified through proteomic screening, assign these finds to H. sapiens and link the expansion of Initial Upper Palaeolithic technologies with the spread of H. sapiens into the mid-latitudes of Eurasia before 45 thousand years ago3. The excavations yielded a wealth of bone artefacts, including pendants manufactured from cave bear teeth that are reminiscent of those later produced by the last Neanderthals of western Europe4-6. These finds are consistent with models based on the arrival of multiple waves of H. sapiens into Europe coming into contact with declining Neanderthal populations7,8.


Assuntos
Fósseis , Migração Humana/história , Animais , Ásia , Osso e Ossos/metabolismo , Bulgária , Cavernas , DNA Antigo/isolamento & purificação , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Europa (Continente) , História Antiga , Humanos , Homem de Neandertal/genética , Filogenia , Comportamento de Utilização de Ferramentas , Dente/anatomia & histologia , Dente/metabolismo
3.
Nature ; 555(7698): 652-656, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562232

RESUMO

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.


Assuntos
Genoma/genética , Homem de Neandertal/classificação , Homem de Neandertal/genética , Filogenia , África/etnologia , Animais , Osso e Ossos , DNA Antigo/análise , Europa (Continente)/etnologia , Feminino , Fluxo Gênico , Genética Populacional , Genômica , Humanos , Ácido Hipocloroso , Masculino , Sibéria/etnologia , Dente
5.
iScience ; 26(12): 108283, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047066

RESUMO

Six infant human teeth and 112 animal tooth pendants from Borsuka Cave were identified as the oldest burial in Poland. However, uncertainties around the dating and the association of the teeth to the pendants have precluded their association with an Upper Palaeolithic archaeological industry. Using <67 mg per tooth, we combined dating and genetic analyses of two human teeth and six herbivore tooth pendants to address these questions. Our interdisciplinary approach yielded informative results despite limited sampling material, and high levels of degradation and contamination. Our results confirm the Palaeolithic origin of the human remains and herbivore pendants, and permit us to identify the infant as female and discuss the association of the assemblage with different Palaeolithic industries. This study exemplifies the progress that has been made toward minimally destructive methods and the benefits of integrating methods to maximize data retrieval from precious but highly degraded and contaminated prehistoric material.

6.
Sci Rep ; 11(1): 23735, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907203

RESUMO

The evolution and development of human mortuary behaviors is of enormous cultural significance. Here we report a richly-decorated young infant burial (AVH-1) from Arma Veirana (Liguria, northwestern Italy) that is directly dated to 10,211-9910 cal BP (95.4% probability), placing it within the early Holocene and therefore attributable to the early Mesolithic, a cultural period from which well-documented burials are exceedingly rare. Virtual dental histology, proteomics, and aDNA indicate that the infant was a 40-50 days old female. Associated artifacts indicate significant material and emotional investment in the child's interment. The detailed biological profile of AVH-1 establishes the child as the earliest European near-neonate documented to be female. The Arma Veirana burial thus provides insight into sex/gender-based social status, funerary treatment, and the attribution of personhood to the youngest individuals among prehistoric hunter-gatherer groups and adds substantially to the scant data on mortuary practices from an important period in prehistory shortly following the end of the last Ice Age.


Assuntos
Sepultamento , Práticas Mortuárias , Status Social , Feminino , História Antiga , Humanos , Lactente , Itália
7.
Sci Rep ; 10(1): 14778, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901061

RESUMO

The Micoquian is the broadest and longest enduring cultural facies of the Late Middle Palaeolithic that spread across the periglacial and boreal environments of Europe between Eastern France, Poland, and Northern Caucasus. Here, we present new data from the archaeological record of Stajnia Cave (Poland) and the paleogenetic analysis of a Neanderthal molar S5000, found in a Micoquian context. Our results demonstrate that the mtDNA genome of Stajnia S5000 dates to MIS 5a making the tooth the oldest Neanderthal specimen from Central-Eastern Europe. Furthermore, S5000 mtDNA has the fewest number of differences to mtDNA of Mezmaiskaya 1 Neanderthal from Northern Caucasus, and is more distant from almost contemporaneous Neanderthals of Scladina and Hohlenstein-Stadel. This observation and the technological affinity between Poland and the Northern Caucasus could be the result of increased mobility of Neanderthals that changed their subsistence strategy for coping with the new low biomass environments and the increased foraging radius of gregarious animals. The Prut and Dniester rivers were probably used as the main corridors of dispersal. The persistence of the Micoquian techno-complex in South-Eastern Europe infers that this axis of mobility was also used at the beginning of MIS 3 when a Neanderthal population turnover occurred in the Northern Caucasus.


Assuntos
Cavernas , DNA Mitocondrial/análise , Fósseis , Homem de Neandertal/genética , Dente/anatomia & histologia , Animais , Arqueologia , DNA Mitocondrial/genética , Humanos , Homem de Neandertal/classificação , Filogenia , Polônia , Datação Radiométrica , Análise de Sequência de DNA , Dente/fisiologia
8.
Sci Rep ; 6: 29144, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27389305

RESUMO

Anatomically modern humans replaced Neanderthals in Europe around 40,000 years ago. The demise of the Neanderthals and the nature of the possible relationship with anatomically modern humans has captured our imagination and stimulated research for more than a century now. Recent chronological studies suggest a possible overlap between Neanderthals and anatomically modern humans of more than 5,000 years. Analyses of ancient genome sequences from both groups have shown that they interbred multiple times, including in Europe. A potential place of interbreeding is the notable Palaeolithic site of Riparo Mezzena in Northern Italy. In order to improve our understanding of prehistoric occupation at Mezzena, we analysed the human mandible and several cranial fragments from the site using radiocarbon dating, ancient DNA, ZooMS and isotope analyses. We also performed a more detailed investigation of the lithic assemblage of layer I. Surprisingly we found that the Riparo Mezzena mandible is not from a Neanderthal but belonged to an anatomically modern human. Furthermore, we found no evidence for the presence of Neanderthal remains among 11 of the 13 cranial and post-cranial fragments re-investigated in this study.


Assuntos
DNA Antigo/isolamento & purificação , Fósseis , Homem de Neandertal/genética , Datação Radiométrica , Animais , Testes Genéticos , Humanos , Itália , Mandíbula/química , Crânio/química
9.
Biotechniques ; 59(2): 87-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26260087

RESUMO

Although great progress has been made in improving methods for generating DNA sequences from ancient biological samples, many, if not most, samples are still not amenable for analyses due to overwhelming contamination with microbial or modern human DNA. Here we explore different DNA decontamination procedures for ancient bones and teeth for use prior to DNA library preparation and high-throughput sequencing. Two procedures showed promising results: (i) the release of surface-bound DNA by phosphate buffer and (ii) the removal of DNA contamination by sodium hypochlorite treatment. Exposure to phosphate removes on average 64% of the microbial DNA from bone powder but only 37% of the endogenous DNA (from the organism under study), increasing the percentage of informative sequences by a factor of two on average. An average 4.6-fold increase, in one case reaching 24-fold, is achieved by sodium hypochlorite treatment, albeit at the expense of destroying 63% of the endogenous DNA preserved in the bone. While both pretreatment methods described here greatly reduce the cost of genome sequencing from ancient material due to efficient depletion of microbial DNA, we find that the removal of human DNA contamination remains a challenging problem.


Assuntos
Contaminação por DNA , Fósseis , Paleodontologia , Bactérias , Osso e Ossos , Descontaminação/métodos , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Paleodontologia/métodos , Dente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA