Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 10(7): 3126-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24607857

RESUMO

Gelatin microspheres (GMSs) are widely used as drug carriers owing to their excellent biocompatibilities and toxicologically safe degradation products. The drug release profile is easily tailored by controlling the cross-linking density and surface-to-volume ratio, i.e. size, of the GMS. In this study, we employed GMSs which are 25 µm in diameter and cross-linked with 0.03125% glutaraldehyde, to enable rapid initial and a subsequent sustained release. Therapeutic potency of human recombinant osteopontin (rhOPN) with or without encapsulation into GMSs was investigated after administrating them to rat stroke model (Sprague-Dawley; middle cerebral artery occlusion, MCAO). The administration of rhOPN/GMS (100 ng/100 µg) at 1h post-MCAO reduced the mean infarct volume by 81.8% of that of the untreated MCAO control and extended the therapeutic window at least to 12h post-MCAO, demonstrating a markedly enhanced therapeutic potency for the use of OPN in the post-ischemic brain. Scanning electron microscopy micrographs revealed that GMSs maintained the three-dimensional shape for more than 5 days in normal brain but were degraded rapidly in the post-ischemic brain, presumably due to high levels of gelatinase induction. After encapsulation with GMS, the duration of OPN release was markedly extended; from the period of 2 days to 5 days in normal brain, and from 2 days to 4 days in the post-ischemic brain; these encompass the critical period for recovery processes, such as vascularization, and controlling inflammation. Together, these results indicate that GMS-mediated drug delivery has huge potential when it was used in the hyperacute period in the post-ischemic brain.


Assuntos
Materiais Biocompatíveis , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Gelatina/administração & dosagem , Microesferas , Fármacos Neuroprotetores/farmacologia , Osteopontina/farmacologia , Animais , Ensaio de Imunoadsorção Enzimática , Microscopia Eletrônica de Varredura , Fármacos Neuroprotetores/farmacocinética , Osteopontina/farmacocinética , Ratos
2.
Biomaterials ; 32(3): 899-908, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21035846

RESUMO

High mobility group box 1 (HMGB1) is a family of endogenous molecules that is released by necrotic cells and causes neuronal damages by triggering inflammatory processes. In the cerebral ischemic brain, sustained and regulated suppression of HMGB1 has been emerged as a therapeutic means to grant neuroprotection. HMGB1 consists of two HMG boxes (A and B) and an acidic C-terminal tail, and the A box peptide antagonistically competes with HMGB1 for its receptors. In the middle cerebral artery occlusion (MCAO) in rats, a murine model of transient cerebral ischemia, administration of HMGB1 A box intraparenchymally, after encapsulated in biodegradable gelatin microspheres (GMS), which enhances the stability of peptide inside and allows its sustained delivery, at 1 h, 3 h, or 6 h after MCAO, reduced mean infarct volumes by, respectively, 81.3%, 42.6% and 30.7% of the untreated MCAO-brain, along with remarkable improvement of neurological deficits. Furthermore, the administration of HMGB1 A box/GMS suppressed proinflammatory cytokine inductions more strongly than the injection of non-encapsulated HMGB1 A box. Given that insulted brains-like ischemia have enhanced gelatinase activity than the normal brain, our results suggest that GMS-mediated delivery of therapeutic peptides is a promising means to provide efficient neuroprotection in the postischemic brain.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Proteína HMGB1/uso terapêutico , Ataque Isquêmico Transitório/tratamento farmacológico , Microesferas , Animais , Materiais Biocompatíveis/administração & dosagem , Encéfalo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Proteína HMGB1/administração & dosagem , Imuno-Histoquímica , Ataque Isquêmico Transitório/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA