Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Small ; 15(6): e1804298, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605244

RESUMO

A variety of nanomaterial-based biosensors have been developed to sensitively detect biomolecules in vitro, yet limited success has been achieved in real-time sensing in vivo. The application of microneedles (MN) may offer a solution for painless and minimally-invasive transdermal biosensing. However, integration of nanostructural materials on microneedle surface as transdermal electrodes remains challenging in applications. Here, a transdermal H2 O2 electrochemical biosensor based on MNs integrated with nanohybrid consisting of reduced graphene oxide and Pt nanoparticles (Pt/rGO) is developed. The Pt/rGO significantly improves the detection sensitivity of the MN electrode, while the MNs are utilized as a painless transdermal tool to access the in vivo environment. The Pt/rGO nanostructures are protected by a water-soluble polymer layer to avoid mechanical destruction during the MN skin insertion process. The polymer layer can readily be dissolved by the interstitial fluid and exposes the Pt/rGO on MNs for biosensing in vivo. The applications of the Pt/rGO-integrated MNs for in situ and real-time sensing of H2 O2 in vivo are demonstrated both on pigskin and living mice. This work offers a unique real-time transdermal biosensing system, which is a promising tool for sensing in vivo with high sensitivity but in a minimally-invasive manner.


Assuntos
Técnicas Biossensoriais , Grafite/química , Nanopartículas/química , Agulhas , Administração Cutânea , Animais , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio/análise , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Platina/química , Povidona/química , Suínos
2.
Nano Lett ; 17(3): 2015-2020, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28152589

RESUMO

Implantable sensors that detect biomarkers in vivo are critical for early disease diagnostics. Although many colloidal nanomaterials have been developed into optical sensors to detect biomolecules in vitro, their application in vivo as implantable sensors is hindered by potential migration or clearance from the implantation site. One potential solution is incorporating colloidal nanosensors in hydrogel scaffold prior to implantation. However, direct contact between the nanosensors and hydrogel matrix has the potential to disrupt sensor performance. Here, we develop a hollow-microcapsule-based sensing platform that protects colloidal nanosensors from direct contact with hydrogel matrix. Using microfluidics, colloidal nanosensors were encapsulated in polyethylene glycol microcapsules with liquid cores. The microcapsules selectively trap the nanosensors within the core while allowing free diffusion of smaller molecules such as glucose and heparin. Glucose-responsive quantum dots or gold nanorods or heparin-responsive gold nanorods were each encapsulated. Microcapsules loaded with these sensors showed responsive optical signals in the presence of target biomolecules (glucose or heparin). Furthermore, these microcapsules can be immobilized into biocompatible hydrogel as implantable devices for biomolecular sensing. This technique offers new opportunities to extend the utility of colloidal nanosensors from solution-based detection to implantable device-based detection.


Assuntos
Coloides/química , Microfluídica/métodos , Nanoestruturas/química , Polietilenoglicóis/química , Anticoagulantes/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Cápsulas/química , Difusão , Desenho de Equipamento , Glucose/análise , Heparina/análise , Microfluídica/instrumentação , Pontos Quânticos/química
3.
Carbohydr Polym ; 309: 120681, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906372

RESUMO

Bacterial overgrowth in injured wounds causes wound infection and excessive inflammation, leading to delayed wound healing. Successful treatment of delayed infected wound healing demands dressings, which can inhibit bacterial growth and inflammation and simultaneously induce vascularization, collagen deposition, and re-epithelialization of wounds. In this study, bacterial cellulose (BC) deposited with Cu2+-loaded phase-transited lysozyme (PTL) nanofilm (BC/PTL/Cu) was prepared for healing infected wounds. The results confirm that PTL were successfully self-assembled on BC matrix, and Cu2+ were loaded into PTL through electrostatic coordination. The tensile strength and the elongation at break of the membranes were not significantly changed after modification with PTL and Cu2+. Compared with BC, the surface roughness of BC/PTL/Cu significantly increased while the hydrophilicity decreased. Moreover, BC/PTL/Cu displayed slower release rate of Cu2+ compared with BC directly loaded with Cu2+. BC/PTL/Cu exhibited good antibacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa. By controlling copper concentration, BC/PTL/Cu were not cytotoxic to mouse fibroblast cell line L929. In vivo, BC/PTL/Cu accelerated wound healing and promoted re-epithelialization, collagen deposition, and angiogenesis while inhibiting inflammation of the infected full-thickness skin wounds of rats. Collectively, these results demonstrate that BC/PTL/Cu composites are promising dressings for healing infected wounds.


Assuntos
Celulose , Infecção dos Ferimentos , Ratos , Camundongos , Animais , Celulose/farmacologia , Muramidase , Cicatrização , Bactérias , Colágeno , Antibacterianos/farmacologia , Inflamação , Infecção dos Ferimentos/microbiologia , Anti-Inflamatórios
4.
J Colloid Interface Sci ; 589: 327-335, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33476889

RESUMO

Liquid food containers commonly suffer from inevitable contamination and even biofilm formation due to the adhesion of food residuals or saliva, which requires detergents to clean. Although previously reported superhydrophobic and omniphobic coatings can resist the adhesion of liquids, the requirements of specific nanostructures or infused lubricants limit their applications in food containers. Here, by grafting smooth glass containers with "liquid like" polydimethylsiloxane brushes, we developed a unique approach for preparing a slippery coating that could exhibit highly robust repellency to various liquid foods. The coating was highly transparent and did not induce a significant alteration of the smooth surface. The "liquid like" coating could effectively prevent the adhesion of various liquid foods and inhibit the formation of bacterial biofilms, without the use of detergents for cleaning. Moreover, this coating could resist mechanical damage from friction, and displayed high biocompatibility with biological cells. The slipperiness, smoothness, robustness and biocompatibility of the "liquid like" coating was highly beneficial to practical applications as self-cleaning glass container, which has been challenging to achieve by conventional superhydrophobic or omniphobic coatings. Our study introduced a versatile strategy to functionalize biocompatible surfaces for food containers which reduced the contamination of residues and the use of detergents, and may be beneficial to human and environmental health.


Assuntos
Nanoestruturas , Polímeros , Biofilmes , Vidro , Humanos , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 13(3): 4450-4462, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33443399

RESUMO

Biosensors that can automatically and continuously track fluctuations in biomarker levels over time are essential for real-time sensing in biomedical and environmental applications. Although many electrochemical sensors have been developed to quickly and sensitively monitor biomarkers, their sensing stability in complex biofluids is disturbed by unavoidable nonspecific adhesion of proteins or bacteria. Recently, various substrate surface modification techniques have been developed to resist biofouling, yet functionalization of electrodes in sensors to be anti-biofouling is rarely achieved. Here, we report an integrated three-electrode system (ITES) modified with a "liquid-like" polydimethylsiloxane (PDMS) brush that can continuously and stably monitor reactive oxygen species (ROS) in complex fluids. Based on the slippery "liquid-like" coating, the modified ITES surface could prevent the adhesion of various liquids as well as the adhesion of proteins and bacteria. The "liquid-like" coating does not significantly affect the sensitivity of the electrode in detecting ROS, while the sensing performance could remain stable and free of bacterial attack even after 3 days of incubation with bacteria. In addition, the PDMS brush-modified ITES (PMITES) could continuously record ROS levels in bacterial-rich fluids with excellent stability over 24 h due to the reduced bacterial contamination on the electrode surface. This technique offers new opportunities for continuous and real-time monitoring of biomarkers that will facilitate the development of advanced sensors for biomedical and environmental applications.


Assuntos
Incrustação Biológica/prevenção & controle , Técnicas Biossensoriais/instrumentação , Dimetilpolisiloxanos/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Células HeLa , Humanos , Oxirredução , Espécies Reativas de Oxigênio/análise
6.
ACS Biomater Sci Eng ; 6(1): 358-366, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463210

RESUMO

Materials for biodevices and bioimplants commonly suffer from unwanted but unavoidable biofouling problems due to the nonspecific adhesion of proteins, cells, or bacteria. Chemical coating or physical strategies for reducing biofouling have been pursued, yet highly robust antibiofouling surfaces that can persistently resist contamination in biological environments are still lacking. In this study, we developed a facile method to fabricate a highly robust slippery and antibiofouling surface by conjugating a liquid-like polymer layer to a substrate. This slippery liquid-attached (SLA) surface was created via a one-step equilibration reaction by tethering methoxy-terminated polydimethylsiloxane (PDMS-OCH3) polymer brushes onto a substrate to form a transparent "liquid-like" layer. The SLA surface exhibited excellent sliding behaviors toward a wide range of liquids and small particles and antibiofouling properties against the long-term adhesion of small biomolecules, proteins, cells, and bacteria. Moreover, in contrast to superomniphobic surfaces and liquid-infused porous surfaces (SLIPS) requiring micro/nanostructures, the SLA layer could be obtained on smooth surfaces and maintain its biofouling resistance under abrasion with persistent stability. Our study offers a simple method to functionalize surfaces with robust slippery and antibiofouling properties, which is promising for potential applications including medical implants and biodevices.


Assuntos
Incrustação Biológica , Nanoestruturas , Incrustação Biológica/prevenção & controle , Polímeros , Porosidade , Propriedades de Superfície
7.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(4): 403-407, 2019 Aug 01.
Artigo em Zh | MEDLINE | ID: mdl-31512834

RESUMO

OBJECTIVE: To study the accuracy of 3D printing implant-guided anterior tooth implantation under flap or flapless surgery. METHODS: Twenty-one cases (32 teeth) with missing teeth were divided into two groups: tooth implantation on the maxillary models under flap surgery (FP group) and tooth implantation on the maxillary models under flapless surgery (FPS group). A dental implant guide was designed and used in the two groups. The actual position of the dental implants in the two groups was compared with the preplanned deviation values of implant top, bottom, vertical distance, and angle deviation. SPSS 19.0 software was used for statistical analysis. RESULTS: The deviation values of implant top, bottom, vertical distance, and angle were significantly lower in the FP group than in the FPS group (P<0.05). CONCLUSIONS: High accuracy of tooth implantation can be realized by using the 3D printing implant guide. The different surgical methods influence the precision of tooth implantation. Clinicians can choose the surgery reasonably depending on the actual situation.


Assuntos
Implantes Dentários , Dente , Tomografia Computadorizada de Feixe Cônico , Implantação Dentária Endóssea , Impressão Tridimensional
8.
ACS Appl Mater Interfaces ; 11(5): 4809-4819, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30628778

RESUMO

Real-time transdermal biosensing provides a direct route to quantify biomarkers or physiological signals of local tissues. Although microneedles (MNs) present a mini-invasive transdermal technique, integration of MNs with advanced nanostructures to enhance sensing functionalities has rarely been achieved. This is largely due to the fact that nanostructures present on MNs surface could be easily destructed due to friction during skin insertion. In this work, we reported a dissolvable polymer-coating technique to protect nanostructures-integrated MNs from mechanical destruction during MNs insertion. After penetration into the skin, the polymer could readily dissolve by interstitial fluids so that the superficial nanostructures on MNs could be re-exposed for sensing purpose. To demonstrate this technique, metallic and resin MNs decorated with vertical ZnO nanowires (vNWs) were employed as an example. Dissolvable poly(vinyl pyrrolidone) was spray-coated on the vNW-MNs surface as a protective layer, which effectively protected the superficial ZnO NWs when MNs penetrated the skin. Transdermal biosensing of H2O2 biomarker in skin tissue using the polymer-protecting MNs sensor was demonstrated both ex vivo and in vivo. The results indicated that polymer coating successfully preserved the sensing functionalities of the MNs sensor after inserting into the skin, whereas the sensitivity of the MN sensor without a coating protection was significantly compromised by 3-folds. This work provided unique opportunities of protecting functional nanomodulus on MNs surface for minimally invasive transdermal biosensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Microinjeções/instrumentação , Nanofios/química , Agulhas , Animais , Desenho de Equipamento , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Povidona/química , Pele/química , Suínos , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA