Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 332(5): 125-135, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31045321

RESUMO

Little is known about tuftelin expression in the developing embryo, previously it was thought to play a role in tooth enamel mineralization. In this study we show tuftelin's spatio-temporal expression in mineralizing and nonmineralizing tissues of the craniofacial complex in the developing mouse embryo. Embryos aged E10.5-E18.5 and newborns aged P3 were used in this study. Polymerase chain reaction (PCR), Real-time PCR, sequencing, and in-situ hybridization were used to detect and quantify messenger RNA (mRNA) expression in different developmental stages. We applied indirect immunohistochemistry and western-blot analyses to investigate protein expression. Two tuftelin mRNA transcripts and a single 64KDa protein were detected throughout embryonic development. Tuftelin was detected in tissues which develop from different embryonic origins; ectoderm, ectomesenchyme, and mesoderm. Tuftelin mRNA and protein were expressed already at E10.5, before the initiation of tooth formation and earlier than previously described. The expression pattern of tuftelin mRNA and protein exhibits dynamic spatio-temporal changes in various tissues. Tuftelin is expressed in neuronal tissues, thus fitting with its described correlation to nerve growth factor. A shift between cytoplasmatic and perinuclear/nuclear expression implies a possible role in regulation of transcription. Recent studies showed tuftelin is induced under hypoxic conditions in-vitro and in-vivo, through the hypoxia-inducible factor 1-α pathway. These results led to the hypothesis that tuftelin is involved in adaptation to hypoxic conditions. The fact that much of mammalian embryogenesis occurs at O 2 concentrations of 1-5%, raises the possibility that tuftelin expression throughout development is due to its role in the adaptive mechanisms in response to hypoxia.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Cabeça/embriologia , Camundongos/embriologia , Animais , Animais Recém-Nascidos , Proteínas do Esmalte Dentário/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
2.
J Cell Mol Med ; 20(5): 815-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26917487

RESUMO

Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM(+)) resulted in enhanced healing of the tooth-supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM(+), dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 µg/µl rHAM(+) were similar to the normal un-transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 µg/µl rHAM(+) treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 µg/µl rHAM(+) increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM(+) dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers.


Assuntos
Amelogenina/farmacologia , Ligamento Colateral Médio do Joelho/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Propriocepção/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Alginatos/administração & dosagem , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos , Feminino , Humanos , Ligamento Colateral Médio do Joelho/lesões , Ligamento Colateral Médio do Joelho/inervação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Terminações Nervosas/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Resistência à Tração , Cicatrização/fisiologia
3.
Mucosal Immunol ; 13(5): 767-776, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457449

RESUMO

Unlike epidermal Langerhans cells (LCs) that originate from embryonic precursors and are self-renewed locally, mucosal LCs arise and are replaced by circulating bone marrow (BM) precursors throughout life. While the unique lifecycle of epidermal LCs is associated with an age-dependent decrease in their numbers, whether and how aging has an impact on mucosal LCs remains unclear. Focusing on gingival LCs we found that mucosal LCs are reduced with age but exhibit altered morphology with that observed in aged epidermal LCs. The reduction of gingival but not epidermal LCs in aged mice was microbiota-dependent; nevertheless, the impact of the microbiota on gingival LCs was indirect. We next compared the ability of young and aged BM precursors to differentiate to mucosal LCs. Mixed BM chimeras, as well as differentiation cultures, demonstrated that aged BM has intact if not superior capacity to differentiate into LCs than young BM. This was in line with the higher percentages of mucosal LC precursors, pre-DCs, and monocytes, detected in aged BM. These findings suggest that while aging is associated with reduced LC numbers, the niche rather than the origin controls this process in mucosal barriers.


Assuntos
Diferenciação Celular , Microambiente Celular/imunologia , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Biomarcadores , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Microambiente Celular/genética , Senescência Celular/genética , Senescência Celular/imunologia , Células Epidérmicas/imunologia , Células Epidérmicas/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/microbiologia , Expressão Gênica , Gengiva/imunologia , Gengiva/metabolismo , Gengiva/microbiologia , Imunofenotipagem , Células de Langerhans/citologia , Camundongos , Microbiota , Mucosa/microbiologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
J Mol Neurosci ; 68(1): 135-143, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30903486

RESUMO

Nerve growth factor (NGF) promotes pleiotropic gene transcription-dependent biological effects, in neuronal and non-neuronal cells, including survival, proliferation, differentiation, neuroprotection, pain, and angiogenesis. It is hypothesized that during odontogenesis, NGF may be implicated in morphogenetic and mineralization events by affecting proliferation and/or differentiation of dental cells. Tuftelin belongs to the enamel associated teeth proteins and is thought to play a role in enamel mineralization. We previously reported that tuftelin transcript and protein, which are ubiquitously expressed in various tissues of embryos, adults, and tumors, were significantly upregulated during NGF-induced PC12 differentiation. To further confirm the involvement of tuftelin in the differentiation process, we established a tuftelin-knockdown neuronal PC12 cell model, using a non-cytotoxic siRNA directed towards sequences at the 3' UTR of the tuftelin gene. Using real-time PCR, we quantified tuftelin mRNA expression and found that tuftelin siRNA, but not scrambled siRNA or transfection reagents, efficiently depleted about 60% of NGF-induced tuftelin mRNA transcripts. The effect of tuftelin siRNA was quantified up to 6 days of NGF-induced differentiation. Using immunofluorescence and western blot analyses, we also found a direct correlation between reduction of 60-80% in tuftelin protein expression and inhibition of about 50-70% in NGF-induced differentiation of the cells, as was detected after 3-6 days of treatment. These results demonstrate an important role for tuftelin in NGF-induced differentiation of PC12 cells. Tuftelin could be a useful target for drug development in disease where neurotrophin therapy is required.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Neurogênese/genética , Animais , Proteínas do Esmalte Dentário/genética , Fator de Crescimento Neural/farmacologia , Neurogênese/efeitos dos fármacos , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA