Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 91: 85-91, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172985

RESUMO

The widespread use of nano-enabled water treatment composites (NWTCs) can result in the release of nanoparticles (NPs) into environmental waters. Studying the release of NPs from NWTCs is of great significance for evaluating the material stability, and environment and biological safety. This work evaluated the amount and species of Zr released from a NWTC, a ZrO2/polymer composite (HZO@D201), during the treatment of electroplating wastewater. About 5 g of the HZO@D201 particles, consisting of porous spheres (0.8 mm in diameter) loaded with ZrO2 NPs, were packed into a glass column (130 mm in length and 20 mm in diameter) and treated with wastewater at a flow rate of 25 mL/hr. The release of Zr occurred mainly in the initial stages of water treatment, decreased with the increase of treatment volume, and approached an equilibrium value of approximately 3.79 µg/L at the treatment volume of about 800 bed volumes. The total amount of Zr released in the effluent was in the range of 2.62-140 µg/L, which was mainly present in the form of ZrO2 NPs. The amounts of Zr released under acidic and alkaline conditions were markedly higher than that under neutral conditions, while the presence of humic acid significantly inhibited the release of Zr. Our study implied that the NWTCs could be a source of engineered NPs in environmental waters, and should be considered in evaluating the safety of ZrO2/polymer composites in water treatment.


Assuntos
Nanocompostos , Nanopartículas , Polímeros , Águas Residuárias , Zircônio
2.
Anal Chem ; 91(3): 1785-1790, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30588801

RESUMO

The contamination of micro- and nanoplastics in marine systems and freshwater is a global issue. Determination of micro- and nanoplastics in the aqueous environment is of high priority to fully assess the risk that plastic particles will pose. Although microplastics have been detected in a variety of aquatic ecosystems, the analysis of nanoplastics remains an unsolved challenge. Herein, for the first time, a Triton X-45 (TX-45)-based cloud-point extraction (CPE) was proposed to preconcentrate trace nanoplastics in environmental waters. Under the optimum extraction conditions, an enrichment factor of 500 was obtained for two types of nanoplastics with different compositions, polystyrene (PS) and poly(methyl methacrylate) (PMMA), without disturbing their original morphology and sizes. Additionally, following thermal treatment at 190 °C for 3 h, the CPE-obtained extract could be submitted to pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) analysis for mass quantification of nanoplastics. Taking 66.2 nm PS nanoplastics and 86.2 nm PMMA nanoplastics as examples, the proposed method showed excellent reproducibility, and high sensitivity with respective detection limits of 11.5 and 2.5 fM. Feasibility of the proposed approach was verified by application of the optimized procedure to four real water samples. Recoveries of 84.6-96.6% at a spiked level of 88.6 fM for PS nanoplastics and 76.5-96.6% at a spiked level of 50.4 fM for PMMA nanoplastics were obtained. Consequently, this work provides an efficient approach for nanoplastic analysis in environmental waters.


Assuntos
Extração Líquido-Líquido/métodos , Nanopartículas/análise , Polimetil Metacrilato/análise , Poliestirenos/análise , Pirólise , Dissacarídeos , Glucuronatos , Limite de Detecção , Nanopartículas/química , Octoxinol/química , Polimetil Metacrilato/química , Poliestirenos/química , Reprodutibilidade dos Testes , Rios/química , Água do Mar/análise , Tensoativos/química , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
3.
Sci Total Environ ; 834: 155427, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35469889

RESUMO

Water pollution by toxic heavy metals poses a threat to the environment and human bodies. Herein, a novel hydrated ferric oxide nanoparticle (HFO) based hybrid adsorbent was fabricated for the removal of toxic Cu(II), Cd(II) and Pb(II) from water. HFOs were immobilized into a porous resin D-201, and then this nanocomposite HFO-D201 was coated with humic acid (HA) to enhance the binding sites of target metals. Both HFOs and HA contribute to the sequestration of heavy metals. The as-synthesized hybrid adsorbent HA-HFO-D201 exhibited excellent performance on the removal of Cu(II), Cd(II), and Pb(II) in a pH range of 3-9, while no Fe leaching was observed. The presence of natural organic matter (20 mg C/L) has limited influences on the adsorption, and more than 85% of the target metals can be removed after treatment. HA-HFO-D201 showed preferable adsorption toward Cu(II) and Pb(II) (1 mg/L) from the background Ca2+ solution at much higher concentrations (100 mg/L), while the retention of Cd(II) (1 mg/L) decreased to some extent. Fixed-bed column experiments exhibited that the treatment capacities of HA-HFO-D201 are 90 bed volumes (BV) for Cd(II), 410 BV for Pb(II) and > 800 BV for Cu(II) of simulated contaminated water to meet the WHO drinking water standard. Meanwhile, depleted HA-HFO-D201 can be readily regenerated by a chelating agent Na2EDTA for repeated use. The hybrid adsorbent HA-HFO-D201 has excellent potential to remove heavy metals in water treatment systems.


Assuntos
Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cádmio , Compostos Férricos , Humanos , Substâncias Húmicas , Chumbo , Óxidos , Polímeros/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA