Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682776

RESUMO

BMP signaling is crucial for differentiation of secretory ameloblasts, the cells that secrete enamel matrix. However, whether BMP signaling is required for differentiation of maturation-stage ameloblasts (MA), which are instrumental for enamel maturation into hard tissue, is hitherto unknown. To address this, we used an in vivo genetic approach which revealed that combined deactivation of the Bmp2 and Bmp4 genes in the murine dental epithelium causes development of dysmorphic and dysfunctional MA. These fail to exhibit a ruffled apical plasma membrane and to reabsorb enamel matrix proteins, leading to enamel defects mimicking hypomaturation amelogenesis imperfecta. Furthermore, subsets of mutant MA underwent pathological single or collective cell migration away from the ameloblast layer, forming cysts and/or exuberant tumor-like and gland-like structures. Massive apoptosis in the adjacent stratum intermedium and the abnormal cell-cell contacts and cell-matrix adhesion of MA may contribute to this aberrant behavior. The mutant MA also exhibited severely diminished tissue non-specific alkaline phosphatase activity, revealing that this enzyme's activity in MA crucially depends on BMP2 and BMP4 inputs. Our findings show that combined BMP2 and BMP4 signaling is crucial for survival of the stratum intermedium and for proper development and function of MA to ensure normal enamel maturation.


Assuntos
Ameloblastos , Amelogênese , Amelogênese/genética , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular , Epitélio , Camundongos , Transdução de Sinais
2.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072004

RESUMO

Deciphering how signaling pathways interact during development is necessary for understanding the etiopathogenesis of congenital malformations and disease. In several embryonic structures, components of the Hedgehog and retinoic acid pathways, two potent players in development and disease are expressed and operate in the same or adjacent tissues and cells. Yet whether and, if so, how these pathways interact during organogenesis is, to a large extent, unclear. Using genetic and experimental approaches in the mouse, we show that during development of ontogenetically different organs, including the tail, genital tubercle, and secondary palate, Sonic hedgehog (SHH) loss-of-function causes anomalies phenocopying those induced by enhanced retinoic acid signaling and that SHH is required to prevent supraphysiological activation of retinoic signaling through maintenance and reinforcement of expression of the Cyp26 genes. Furthermore, in other tissues and organs, disruptions of the Hedgehog or the retinoic acid pathways during development generate similar phenotypes. These findings reveal that rigidly calibrated Hedgehog and retinoic acid activities are required for normal organogenesis and tissue patterning.


Assuntos
Família 26 do Citocromo P450/genética , Desenvolvimento Embrionário/genética , Proteínas Hedgehog/genética , Ácido Retinoico 4 Hidroxilase/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Embrião de Mamíferos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Organogênese/genética , Transdução de Sinais/genética , Dente/crescimento & desenvolvimento , Dente/metabolismo , Tretinoína/metabolismo
3.
Gene Expr Patterns ; 9(3): 178-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19059364

RESUMO

Tmem16a, Tmem16c, Tmem16f, Tmem16h and Tmem16k belong to the newly identified Tmem16 gene family encoding eight-pass transmembrane proteins. We have analyzed the expression patterns of these genes during mouse cephalic development. In the central nervous system, Tmem16a transcripts were abundant in the ventricular neuroepithelium, whereas the other Tmem16 family members were readily detectable in the subventricular zone and differentiating fields. In the rostral spinal cord, Tmem16f expression was highest in the motor neuron area. In the developing eye, the highest amounts of Tmem16a transcripts were detected in the lens epithelium, hyaloid plexus and outer layer of the retina, while the other family members were abundant in the retinal ganglionic cell layer. Interestingly, throughout development, Tmem16a expression in the inner ear was robust and restricted to a subset of cells within the epithelium, which at later stages formed the organ of Corti. The stria vascularis was particularly rich in Tmem16a and Tmem16f mRNA. Other sites of Tmem16 expression included cranial nerve and dorsal root ganglia, meningeal precursors and the pituitary. Tmem16c and Tmem16f transcripts were also patent in the submandibular autonomic ganglia. A conspicuous feature of Tmem16a was its expression along the walls of blood vessels as well as in cells surrounding the trigeminal and olfactory nerve axons. In organs developing through epithelial-mesenchymal interactions, such as the palate, tooth and tongue, the above five Tmem16 family members showed interesting dynamic expression patterns as development proceeded. Finally and remarkably, osteoblasts and chondrocytes were particularly loaded with Tmem16a, Tmem16c and Tmem16f transcripts.


Assuntos
Canais de Cloreto , Neurogênese/genética , Animais , Anoctamina-1 , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Canais de Cloreto/biossíntese , Canais de Cloreto/genética , Condrócitos/metabolismo , Nervos Cranianos/embriologia , Nervos Cranianos/metabolismo , Orelha Interna/embriologia , Orelha Interna/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Osteoblastos/metabolismo , Palato/embriologia , Palato/metabolismo , Retina/embriologia , Retina/metabolismo , Língua/embriologia , Língua/metabolismo , Dente/embriologia , Dente/metabolismo
4.
Dev Biol ; 285(2): 490-5, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16109396

RESUMO

During palatogenesis, fusion of the palatine shelves is a crucial event, the failure of which results in the birth defect, cleft palate. The fate of the midline epithelial seam (MES), which develops transiently upon contact of the two palatine shelves, is still strongly debated. Three major mechanisms underlying the regression of the MES upon palatal fusion have been proposed: (1) apoptosis has been evidenced by morphological and molecular criteria; (2) epithelial-mesenchymal transformation has been suggested based on ultrastructural and lipophilic dye cell labeling observations; and (3) migration of MES cells toward the oral and nasal areas has been proposed following lipophilic dye cell labeling. To verify whether epithelial-mesenchymal transformation of MES cells takes place during murine palatal fusion, we used the Cre/lox system to genetically mark Sonic hedgehog- and Keratin-14-expressing palatal epithelial cells and to identify their fate in vivo. Our analyses provide conclusive evidence that rules out the occurrence of epithelial-mesenchymal transformation of MES cells.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Mesoderma/citologia , Morfogênese/fisiologia , Palato/embriologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Proteínas de Fluorescência Verde , Proteínas Hedgehog , Imuno-Histoquímica , Queratina-14 , Queratinas/metabolismo , Camundongos , Camundongos Transgênicos , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA