Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ann Vasc Surg ; 29(2): 341-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449988

RESUMO

BACKGROUND: Bombyx mori silk fibroin (SF) is biocompatible and degradable and has been proposed as a new material for small-diameter vascular grafts. We compared biological reactions to vascular grafts made of SF and polyethylene terephthalate (PET) to reveal the potential ability of SF as a base and/or coating materials for vascular prostheses. METHODS: SF was combined with PET or gelatin (G) to make 4 types of vascular grafts (SF/SF, SF/G, PET/SF, and PET/G, shown as "base/coating material," respectively), which are 1.5 mm in diameter and 10 mm in length. The 4 types of grafts (n = 6, respectively) were implanted into rat abdominal aortae and explanted 2 weeks or 3 months later. RESULTS: Two weeks after implantation, there are no significant differences among the 4 kinds of grafts in biological reactions evaluated by histopathologic examination. However, a remarkable difference was observed after 3 months. The area of tissue infiltration into the inside of the graft wall was approximately 2.5 times larger in SF/SF than that in PET/G. The endothelialization was achieved almost 100% in SF/SF, despite only 50% was achieved in PET/G. CONCLUSIONS: Results show that SF has a higher potential as a base of vascular grafts than the commercially available PET/G graft. The larger tissue infiltration area in PET/SF compared with that in PET/G also indicates the potential of SF as a coating material. In the present study, SF delivered promising results as base and coating materials for small-diameter vascular prostheses.


Assuntos
Aorta Abdominal/fisiologia , Fibroínas , Polietilenotereftalatos , Reepitelização/fisiologia , Animais , Materiais Biocompatíveis , Bioprótese , Prótese Vascular , Bombyx , Feminino , Teste de Materiais , Modelos Animais , Ratos , Ratos Sprague-Dawley , Seda , Enxerto Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA