Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131399, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641504

RESUMO

Developing an injectable hemostatic dressing with shape recovery and high blood absorption ratio for rapid hemostasis in noncompressible hemorrhage maintains a critical clinical challenge. Here, double-network cryogels based on carboxymethyl chitosan, sodium alginate, and methacrylated sodium alginate were prepared by covalent crosslinking and physical crosslinking, and named carboxymethyl chitosan/methacrylated sodium alginate (CM) cryogels. Covalent crosslinking was achieved by methacrylated sodium alginate in the freeze casting process, while physical crosslinking was realized by electrostatic interaction between the amino group of carboxymethyl chitosan and the carboxyl group of sodium alginate. CM cryogels exhibited large water swelling ratios (8167 ± 1062 %), fast blood absorption speed (2974 ± 669 % in 15 s), excellent compressive strength (over 160 kPa for CM100) and shape recovery performance. Compared with gauze and commercial gelatin sponge, better hemostatic capacities were demonstrated for CM cryogel with the minimum blood loss of 40.0 ± 8.9 mg and the lowest hemostasis time of 5.0 ± 2.0 s at hemostasis of rat liver. Made of natural polysaccharides with biocompatibility, hemocompatibility, and cytocompatibility, the CM cryogels exhibit shape recovery and high blood absorption rate, making them promising to be used as an injectable hemostatic dressing for rapid hemostasis in noncompressible hemorrhage.


Assuntos
Alginatos , Quitosana , Quitosana/análogos & derivados , Criogéis , Hemorragia , Hemostasia , Hemostáticos , Quitosana/química , Criogéis/química , Alginatos/química , Animais , Hemorragia/tratamento farmacológico , Ratos , Hemostasia/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Materiais Biocompatíveis/química , Humanos , Masculino
2.
Anal Bioanal Chem ; 405(15): 5353-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23515609

RESUMO

Ionic liquids have attracted much attention in the analysis of a variety of species. The functional groups in ionic liquids can result in highly efficient separation and enrichment and, because of their typical lack of volatility, they are environmentally benign. We grafted imidazole cations onto the surface of chloromethyl polystyrene, denoted PS-CH2-[MIM](+)Cl(-), and this modified polymer was used to selectively extract the protein hemoglobin (Hb). The prepared extractant PS-CH2-[MIM](+)Cl(-), containing 2 mmol immobilized imidazole groups per gram polymer, was characterized by FT-IR, surface charge analysis, and elemental analysis. The adsorption efficiency was 91%. The adsorption capacity of the PS-CH2-[MIM](+)Cl(-) for Hb was 23.6 µg mg(-1), and 80% of the retained Hb could be readily recovered by use of 0.5% (m/v) aqueous sodium dodecyl sulfate (SDS) solution as eluate. The activity of the eluted Hb was approximately 90%. The prepared imidazole-containing solid phase polymer was used for direct adsorption of Hb without use of any other solid matrix as support of the ionic liquid. The material was used in practice to isolate Hb from human whole blood.


Assuntos
Fracionamento Químico/métodos , Hemoglobinas/química , Imidazóis/química , Poliestirenos/química , Adsorção , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA