Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 32(25): 6419-28, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27245380

RESUMO

Nanoporous epoxy with gyroid texture is fabricated by using a nanoporous polymer with gyroid-forming nanochannels as a template for polymerization of epoxy. The nanoporous polymer template is obtained from the self-assembly of degradable block copolymer, polystyrene-b-poly(l-lactide) (PS-PLLA), followed by hydrolysis of PLLA blocks. Templated polymerization can be conducted under ambient conditions to create well-defined, bicontinuous epoxy networks in a PS matrix. By taking advantage of multistep curing of epoxy, well-ordered robust nanoporous epoxy can be obtained after removal of PS template, giving robust porous materials. The through-hole nanoporous epoxy in the film state can be used as a coated layer to enhance the adsorbability for both lysozyme and bovine serum albumin.


Assuntos
Nanoporos , Polímeros , Proteínas/farmacocinética , Resinas Epóxi , Poliestirenos , Porosidade
2.
ACS Biomater Sci Eng ; 7(7): 3379-3388, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34161086

RESUMO

With the rapid development and advancement in orthodontic and orthopedic technologies, the demand for biomedical-grade titanium (Ti) alloys is growing. The Ti-based implants are susceptible to bacterial infections, leading to poor healing and osteointegration, resulting in implant failure or repeated surgical intervention. Silk sericin (SS) is hydrophilic, biocompatible, and biodegradable and could induce a low immunological response in vivo. As a result, it would be intriguing to investigate the use of hydrophilic SS in surface modification. In this work, the tyrosine moiety in SS was oxidized by tyrosinase (or polyphenol oxidase) to the 3,4-dihydroxyphenylalanine (DOPA) form, generating the catechol moiety-containing SS (SSC). Inspired by the adhesion of mussel foot proteins, the SSC coatings could be directly deposited onto multiple surfaces in SS and tyrosinase mixed stock solutions to create active surfaces with catechol groups. Further, the SSC-coated Ti surfaces were hybridized with silver nanoparticles (Ag NPs) via in situ silver ion (Ag+) reduction. The antibacterial properties of the Ag NPs/SS-coated Ti surfaces are demonstrated, and they can prevent bacterial cell adhesion as well as early-stage biofilm formation. In addition, the developed Ag NPs/SSC-coated Ti surfaces exhibited a negligible level of cytotoxicity in L929 mouse fibroblast cells.


Assuntos
Bivalves , Nanopartículas Metálicas , Sericinas , Adesivos , Animais , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Camundongos , Sericinas/farmacologia , Prata/farmacologia , Staphylococcus aureus
3.
J Colloid Interface Sci ; 299(2): 791-6, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16527293

RESUMO

A submicrometer-scaled polystyrene/melamine-formaldehyde hollow microsphere composite was prepared by self-assembling of sulfonated polystyrene (SPS) latex particles at the interface of emulsion droplets and then being fixed in place using a hard melamine-formaldehyde (MF) composite layer. For control-released purposes, the influential factors that control the size and uniformity of the packed-droplets and the permeability of the composite shell, including the initial particle location, the hydrophilicity and the size of colloidal templates, the oil phase solvent and reserving time of emulsions after the addition of MF prepolymer, were further studied. Relatively uniform sized particle packed-droplets with an average diameter of 10 microm were obtained. The assembled SPS particles kept ordering and minimal conglutination after the preparation of composite microspheres, which allows of controlling the permeability from the interstices between the particles. Porous-mesh-structured MF composite layer was formed to further control the permeability. The morphology of emulsions and composite microspheres were characterized by optical microscopy, scanning and transmission electron microscopy.


Assuntos
Resinas Compostas/química , Emulsões , Microesferas , Estireno/química , Acrilatos/química , Cinética , Modelos Moleculares , Enxofre , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA