Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Prosthet Dent ; 127(6): 882-889, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33472752

RESUMO

STATEMENT OF PROBLEM: The mechanical behavior of the conical connection implant with different torque levels requires evaluation. PURPOSE: The purpose of this finite element analysis study was to investigate the impact of abutment screw torque on the formation of microgaps at the implant-to-abutment interface of a conical connection under oblique loading. This is important because it is thought that bacteria can invade the internal implant space through the abutment-implant microgaps, causing peri-implantitis. MATERIAL AND METHODS: Three-dimensional finite element analyses of the conical implant-abutment connection were performed by using screw torques of 20 Ncm and 30 Ncm. Oblique loads from 10 N to 280 N were applied to the prosthesis placed on the implant. The maximum von Mises stress in the abutment screw, the microgap formation process, and the critical load for bridging the internal implant space were evaluated. RESULTS: The stresses in the abutment screw under oblique loading had limited sensitivity to the screw torque. However, the residual stress in the screw with a 30-Ncm torque was 35% higher than that with a 20-Ncm torque in the absence of an external load. The area in contact at the implant-to-abutment interface decreased with increasing load for both torque values. The critical load for bridging the internal implant space was 160 N for a screw torque of 20 Ncm and 220 N for a screw torque of 30 Ncm. The maximum gap size was approximately 470 µm with all the loads. CONCLUSIONS: Increasing the screw torque can reduce the formation of microgaps at the implant-to-abutment interface. However, this will result in higher mean stress in the abutment screw, which may reduce its fatigue life and consequently that of the prosthesis. Further research is needed to evaluate the relationship between the abutment screw torque and microleakage in implant-supported restorations.


Assuntos
Dente Suporte , Implantes Dentários , Parafusos Ósseos , Projeto do Implante Dentário-Pivô , Análise do Estresse Dentário/métodos , Análise de Elementos Finitos , Estresse Mecânico , Torque
2.
J Mech Behav Biomed Mater ; 142: 105847, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127010

RESUMO

PURPOSE: This study aimed to evaluate the stress distribution and microgap formation in implant assemblies with conical abutments made of different materials under an oblique load. MATERIALS AND METHODS: The mechanical behavior of an implant assembly with a titanium abutment was analyzed and compared with that of an assembly with a Y-TZP abutment using finite element analysis (FEA). A torque of 20 Ncm was first applied to the abutment screw, followed by oblique loads of 10 N-280 N applied to the prosthesis placed on the implant. The maximum stress in the abutment screw, the microgap formation process, and the critical load for bridging the internal implant space were evaluated. RESULTS: No significant difference in stress distribution between the two cases was observed, with the stresses being mainly concentrated at the top half of the screw (the predicted maximum von Mises stress was approximately 1200 MPa at 280 N). The area in contact at the implant-to-abutment interface decreased with increasing load for both abutments, with the critical load for bridging the internal implant space being roughly 140 N. The maximum gap size being was approximately 470 µm with either abutment. CONCLUSION: There was no significant difference in the stress distribution or microgap formed between implant assemblies with titanium and Y-TZP abutments having an internal conical connection.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Titânio , Torque , Análise do Estresse Dentário , Estresse Mecânico
3.
Acta Biomater ; 109: 132-141, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32289496

RESUMO

Currently, resin composites are the most popular materials for dental restoration in clinical practice. Although the properties of such materials have been improved significantly, together with better clinical techniques used for their placement, early restoration failure still occurs too frequently. As clinical studies take years to complete, and new resin composites are being produced at ever increasing pace, laboratory assessment using accelerated but representative tests is necessary. The main types of failure in resin-composite restoration are tooth/restoration fracture and secondary caries, which are caused by a combination of mechanical and biochemical challenges. In this study, a biofilm model (S. mutans) and a chemical model (lactic-acid buffer) for producing artificial caries in bovine dentin are developed and calibrated against in situ data. Using a power law relationship between the demineralization depth and challenge duration, scale factors that convert the in vitro durations to the equivalent clinical durations are determined for different pH values for each model. The scale factors will allow the synchronization of biochemical and mechanical challenges in terms of their rates of action to potentially test resin-composite restoration in an accelerated but clinically representative manner. STATEMENT OF SIGNIFICANCE: Although the properties of resin composites for dental restoration have been improved significantly, early restoration failure still occurs too frequently. As clinical studies take years to complete, accelerated laboratory testing is necessary. Resin-composite restoration fail mainly through fracture and secondary caries, caused by a combination of mechanical and biochemical challenges. In this study, a biofilm and a chemical model for producing artificial caries in bovine dentin are calibrated against in situ data. Using a power law relationship between demineralization depth and challenge duration, scale factors are determined for different pH for each model. The scale factors will allow the synchronization of biochemical and mechanical challenges in testing resin-composite restoration in an accelerated but clinically representative manner.


Assuntos
Resinas Compostas/química , Resinas Compostas/metabolismo , Restauração Dentária Permanente/estatística & dados numéricos , Animais , Biofilmes , Calibragem , Bovinos , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Teste de Materiais/métodos , Modelos Biológicos , Modelos Químicos , Streptococcus mutans/metabolismo , Streptococcus mutans/fisiologia , Desmineralização do Dente/induzido quimicamente
4.
Clin Implant Dent Relat Res ; 21(4): 741-752, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31087510

RESUMO

PURPOSE: To develop numerical and experimental methods for investigating the formation of micro-gaps and the change in contact area at the implant-abutment interface of two different connector designs under oblique cyclic loading. MATERIALS AND METHODS: Samples (n = 10 per group) of two-piece implant systems with the conical connection (group A) and the external hexagonal connection (group B) were subjected to cyclic loading with increasing load amplitudes up to 220 N. After loading, the samples were scanned using micro-CT, with silver nitrate as a high-contrast penetrant, and the level of leakage was assessed using a discrete scoring system. Three-dimensional finite element (FE) analyses of the two implant systems were also conducted to reveal the micro-gap formation process, especially bridging of the internal abutment screw space. The experimental and numerical results for the bridging load were then compared. RESULTS: 90% of the samples in group A showed leakage into the internal implant space at a load of around 100 N; while over 80% of those in group B did so at a load of around 40 N. This agreed with the FE analysis, which showed bridging of the internal implant space at loads similar to those measured for the two implant systems. Residual gaps of less than 1.49 µm were predicted for group A only after unloading. CONCLUSIONS: The FE-predicted loads for bridging agreed well with those found experimentally for leakage to occur. The conical connection showed more resistance against formation of micro-gaps at the implant-abutment interface than the external hexagonal connection. Although the minimum load required to bridge the internal implant space was within the range of human biting force, the relation between bacterial invasion and micro-gaps needs further research.


Assuntos
Projeto do Implante Dentário-Pivô , Implantes Dentários , Dente Suporte , Análise do Estresse Dentário , Análise de Elementos Finitos , Humanos
5.
Comput Math Methods Med ; 2019: 7416076, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379973

RESUMO

In some cases of proclined maxillary incisors, the proclination can be corrected by a fixed prosthesis. The aim of this study was to investigate the magnitude and distribution of (i) principal stresses in the adjacent alveolar bone and (ii) direct and shear stresses that are normal and parallel, respectively, to the bone-tooth interface of a normal angulated maxillary incisor, a proclined one, and a proclined one corrected with an angled prosthetic crown. 2D finite-element models were constructed, and a static load of 200 N on the palatal surface of the maxillary incisor at different load angles was applied. Load angles (complementary angle to interincisal angle) ranging from 20° to 90° were applied. The results indicate that the load angle could have a more significant impact on the overall stress distributions in the surrounding alveolar bone and along the bone-tooth interface than the proclination of the maxillary incisor. Provided that the resulting interincisal angle is 150° or smaller, the stresses in the surrounding bone and at the bone-tooth interface are similar between a proclined maxillary incisor and the one with prosthodontic correction. Hence, such a correction, when deemed appropriate clinically, can be undertaken with confidence that there is little risk of incurring additional stresses over that already in existence, in the supporting bone and at the tooth-bone interface.


Assuntos
Planejamento de Prótese Dentária , Prótese Dentária/instrumentação , Incisivo/anatomia & histologia , Maxila/anatomia & histologia , Algoritmos , Fenômenos Biomecânicos , Cefalometria , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Humanos , Incisivo/cirurgia , Modelos Lineares , Teste de Materiais , Maxila/cirurgia , Pressão , Software , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA