Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28973963

RESUMO

Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.


Assuntos
Amilose/química , Plásticos Biodegradáveis/química , Ácido Cítrico/química , Reagentes de Ligações Cruzadas/química , Hordeum/química , Cristalização , Glicerol/química , Permeabilidade , Transição de Fase , Plantas Geneticamente Modificadas/química , Plastificantes/química , Amido/química
2.
Carbohydr Polym ; 253: 117277, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278948

RESUMO

Thermoplastic, polysaccharide-based plastics are environmentally friendly. However, typical shortcomings include lack of water resistance and poor mechanical properties. Nanocomposite manufacturing using pure, highly linear, polysaccharides can overcome such limitations. Cast nanocomposites were fabricated with plant engineered pure amylose (AM), produced in bulk quantity in transgenic barley grain, and cellulose nanofibers (CNF), extracted from agrowaste sugar beet pulp. Morphology, crystallinity, chemical heterogeneity, mechanics, dynamic mechanical, gas and water permeability, and contact angle of the films were investigated. Blending CNF into the AM matrix significantly enhanced the crystallinity, mechanical properties and permeability, whereas glycerol increased elongation at break, mainly by plasticizing the AM. There was significant phase separation between AM and CNF. Dynamic plasticizing and anti-plasticizing effects of both CNF and glycerol were demonstrated by NMR demonstrating high molecular order, but also non-crystalline, and evenly distributed 20 nm-sized glycerol domains. This study demonstrates a new lead in functional polysaccharide-based bioplastic systems.


Assuntos
Amilose/química , Plásticos Biodegradáveis/química , Celulose/química , Nanocompostos/química , Nanofibras/química , Extratos Vegetais/química , Amilose/isolamento & purificação , Beta vulgaris/química , Celulose/isolamento & purificação , Cristalização , Farinha , Glicerol/química , Hordeum/química , Permeabilidade , Plastificantes/química , Maleabilidade , Amido/química , Resistência à Tração , Temperatura de Transição
3.
Carbohydr Polym ; 152: 398-408, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27516287

RESUMO

Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers.


Assuntos
Amilose/química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/síntese química , Glicerol/química , Hordeum/química , Plantas Geneticamente Modificadas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA