Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 232: 115316, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37079990

RESUMO

Digital enzyme linked immunosorbent assays (ELISA) can be used to detect various antigens such as spike (S) or nucleocapsid (N) proteins of SARS-CoV-2, with much higher sensitivity compared to that achievable using conventional antigen tests. However, the use of microbeads and oil for compartmentalization in these assays limits their user-friendliness and causes loss of assay information due to the loss of beads during the process. To improve the sensitivity of antigen test, here, we developed an oil- and bead-free single molecule counting assay, with rolling circle amplification (RCA) on a substrate. With RCA, the signal is localized at the captured region of an antigen, and the signal from a single antigen molecule can be visualized using the same immune-reaction procedures as in the conventional ELISA. Substrate-based single molecule assay was theoretically evaluated for kd value, and the concentration of capture and detection antibodies. As a feasibility test, biotin-conjugated primer and mouse IgG conjugates were detected even at femto-molar concentrations with this digital immuno-RCA. Using this method, we detected the N protein of SARS-CoV-2 with a limit of detection less than 1 pg/mL more than 100-fold improvement compared to the detection using conventional ELISA. Furthermore, testing of saliva samples from COVID-19 patients and healthy controls (n = 50) indicated the applicability of the proposed method for detection of SARS-CoV-2 with 99.5% specificity and 90.9% sensitivity.


Assuntos
Técnicas Biossensoriais , COVID-19 , Animais , Camundongos , SARS-CoV-2 , COVID-19/diagnóstico , Saliva , Ensaio de Imunoadsorção Enzimática/métodos , Antígenos , Sensibilidade e Especificidade , Anticorpos Antivirais
2.
J Biomed Nanotechnol ; 9(4): 610-4, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23621019

RESUMO

We have developed hydrodynamic filtration method in microfluidic device for the efficient size-selection of polydisperse lipid vesicles for giant unilamellar vesicles (GUVs), in which vesicles were formed by electroformation method. Combining pinched flow channel design before hydrodynamic filtration, GUVs were flowed and guided to filtration channels, in which small lipid vesicles were further filtered and GUV were remained in main flow channels. For increasing the selectivity of GUV in outlets, length of slit section, or relative flow rate were controlled and drain channels were introduced for avoiding back flow. At higher flow rate in a pinched flow, the fraction of recovered GUVs (>10 microm) were increased, in which most of small vesicles were filtered.


Assuntos
Filtração/métodos , Hidrodinâmica , Microfluídica/métodos , Tamanho da Partícula , Lipossomas Unilamelares/química , Emulsões , Imagem Óptica , Fosfatidilcolinas/química , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA