Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Sci Technol ; 57(9): 3562-3570, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36812008

RESUMO

Procellariiform seabirds like northern fulmars (Fulmarus glacialis) are prone to ingest and accumulate floating plastic pieces. In the North Sea region, there is a long tradition to use beached fulmars as biomonitors for marine plastic pollution. Monitoring data revealed consistently lower plastic burdens in adult fulmars compared to younger age classes. Those findings were hypothesized to partly result from parental transfer of plastic to chicks. However, no prior study has examined this mechanism in fulmars by comparing plastic burdens in fledglings and older fulmars shortly after the chick-rearing period. Therefore, we investigated plastic ingestion in 39 fulmars from Kongsfjorden (Svalbard), including 21 fledglings and 18 older fulmars (adults/older immatures). We found that fledglings (50-60 days old) had significantly more plastic than older fulmars. While plastic was found in all fledglings, two older fulmars contained no and several older individuals barely any plastic. These findings supported that fulmar chicks from Svalbard get fed high quantities of plastic by their parents. Adverse effects of plastic on fulmars were indicated by one fragment that perforated the stomach and possibly one thread perforating the intestine. Negative correlations between plastic mass and body fat in fledglings and older fulmars were not significant.


Assuntos
Conteúdo Gastrointestinal , Plásticos , Humanos , Animais , Svalbard , Monitoramento Ambiental , Aves , Regiões Árticas
2.
Environ Sci Technol ; 54(20): 12820-12828, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33043667

RESUMO

Fluoropolymers are a group of polymers within the class of per- and polyfluoroalkyl substances (PFAS). The objective of this analysis is to evaluate the evidence regarding the environmental and human health impacts of fluoropolymers throughout their life cycle(s). Production of some fluoropolymers is intimately linked to the use and emissions of legacy and novel PFAS as polymer processing aids. There are serious concerns regarding the toxicity and adverse effects of fluorinated processing aids on humans and the environment. A variety of other PFAS, including monomers and oligomers, are emitted during the production, processing, use, and end-of-life treatment of fluoropolymers. There are further concerns regarding the safe disposal of fluoropolymers and their associated products and articles at the end of their life cycle. While recycling and reuse of fluoropolymers is performed on some industrial waste, there are only limited options for their recycling from consumer articles. The evidence reviewed in this analysis does not find a scientific rationale for concluding that fluoropolymers are of low concern for environmental and human health. Given fluoropolymers' extreme persistence; emissions associated with their production, use, and disposal; and a high likelihood for human exposure to PFAS, their production and uses should be curtailed except in cases of essential uses.


Assuntos
Fluorocarbonos , Saúde Ambiental , Fluorocarbonos/análise , Humanos , Polietileno
3.
Environ Sci Technol ; 50(4): 1924-33, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26694206

RESUMO

The northern fulmar (Fulmarus glacialis) is defined as an indicator species of plastic pollution by the Oslo-Paris Convention for the North-East Atlantic, but few data exist for fulmars from Norway. Moreover, the relationship between uptake of plastic and pollutants in seabirds is poorly understood. We analyzed samples of fulmars from Norwegian waters and compared the POP concentrations in their liver and muscle tissue with the corresponding concentrations in the loads of ingested plastic in their stomachs, grouped as "no", "medium" (0.01-0.21 g; 1-14 pieces of plastic), or "high" (0.11-0.59 g; 15-106 pieces of plastic). POP concentrations in the plastic did not differ significantly between the high and medium plastic ingestion group for sumPCBs, sumDDTs, and sumPBDEs. By combining correlations among POP concentrations, differences in tissue concentrations of POPs between plastic ingestion subgroups, fugacity calculations, and bioaccumulation modeling, we showed that plastic is more likely to act as a passive sampler than as a vector of POPs, thus reflecting the POP profiles of simultaneously ingested prey.


Assuntos
Monitoramento Ambiental , Conteúdo Gastrointestinal/química , Plásticos , Poluentes Químicos da Água/toxicidade , Animais , Charadriiformes/fisiologia , Noruega , Poluentes Químicos da Água/química
4.
Chemosphere ; 355: 141721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522675

RESUMO

For decades, the northern fulmar (Fulmarus glacialis) has been found to ingest and accumulate high loads of plastic due to its feeding ecology and digestive tract morphology. Plastic ingestion can lead to both physical and toxicological effects as ingested plastics can be a pathway for hazardous chemicals into seabirds' tissues. Many of these contaminants are ubiquitous in the environment and the contribution of plastic ingestion to the uptake of those contaminants in seabirds' tissues is poorly known. In this study we aimed at quantifying several plastic-related chemicals (PRCs) -PBDE209, several dechloranes and several phthalate metabolites- and assessing their relationship with plastic burdens (both mass and number) to further investigate their potential use as proxies for plastic ingestion. Blood samples from fulmar fledglings and liver samples from both fledgling and non-fledgling fulmars were collected for PRC quantification. PBDE209 and dechloranes were quantified in 39 and 33 livers, respectively while phthalates were quantified in plasma. Plastic ingestion in these birds has been investigated previously and showed a higher prevalence in fledglings. PBDE209 was detected in 28.2 % of the liver samples. Dechlorane 602 was detected in all samples while Dechloranes 601 and 604 were not detected in any sample. Dechlorane 603 was detected in 11 individuals (33%). Phthalates were detected in one third of the analysed blood samples. Overall, no significant positive correlation was found between plastic burdens and PRC concentrations. However, a significant positive relationship between PBDE209 and plastic number was found in fledglings, although likely driven by one outlier. Our study shows the complexity of PRC exposure, the timeline of plastic ingestion and subsequent uptake of PRCs into the tissues in birds, the additional exposure of these chemicals via their prey, even in a species ingesting high loads of plastic.


Assuntos
Monitoramento Ambiental , Ácidos Ftálicos , Plásticos , Humanos , Animais , Plásticos/análise , Aves , Trato Gastrointestinal/química , Ingestão de Alimentos
5.
Mar Pollut Bull ; 202: 116365, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608430

RESUMO

Plastic pollution threatens many organisms around the world. In particular, the northern fulmar, Fulmarus glacialis, is known to ingest high quantities of plastics. Since data are sparse in the Eurasian Arctic, we investigated plastic burdens in the stomachs of fulmar fledglings from Kongsfjorden, Svalbard. Fifteen birds were collected and only particles larger than 1 mm were extracted, characterised and analysed with Fourier Transform InfraRed spectroscopy. All birds ingested plastic. In total, 683 plastic particles were found, with an average of 46 ± 40 SD items per bird. The most common shape, colour and polymer were hard fragment, white, and polyethylene, respectively. Microplastics (< 5 mm) were slightly more represented than mesoplastics (> 5 mm). This study confirms high numbers of ingested plastics in fulmar fledglings from Svalbard and suggests that fulmar fledglings may be suitable for temporal monitoring of plastic pollution, avoiding potential biases caused by age composition or breeding state.


Assuntos
Aves , Monitoramento Ambiental , Plásticos , Animais , Plásticos/análise , Svalbard , Poluentes Químicos da Água/análise , Microplásticos/análise , Regiões Árticas
6.
Mar Pollut Bull ; 199: 116037, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242067

RESUMO

There is a need for baseline information about how much plastics are ingested by wildlife and potential negative consequences thereof. We analysed the frequency of occurrence (FO) of plastics >1 mm in the stomachs of five pursuit-diving seabird species collected opportunistically. Atlantic puffins (Fratercula arctica) found emaciated on beaches in SW Norway had the highest FO of plastics (58.8 %), followed by emaciated common guillemots (Uria aalge; 9.1 %) also found beached in either SW or SE Norway. No plastics were detected in razorbills (Alca torda), great cormorants (Phalacrocorax carbo), and European shags (Gulosus aristotelis) taken as bycatch in northern Norway. This is the first study to report on plastic ingestion of these five species in northern Europe, and it highlights both the usefulness and limitations of opportunistic sampling. Small sample sizes, as well as an unbalanced sample design, complicated the interpretation of the results.


Assuntos
Charadriiformes , Mergulho , Animais , Prevalência , Aves , Noruega , Monitoramento Ambiental , Plásticos/análise
7.
Nat Commun ; 14(1): 3707, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349297

RESUMO

Few studies report the occurrence of microplastics (MP), including tire wear particles (TWP) in the marine atmosphere, and little data is available regarding their size or sources. Here we present active air sampling devices (low- and high-volume samplers) for the evaluation of composition and MP mass loads in the marine atmosphere. Air was sampled during a research cruise along the Norwegian coast up to Bear Island. Samples were analyzed with pyrolysis-gas chromatography-mass spectrometry, generating a mass-based data set for MP in the marine atmosphere. Here we show the ubiquity of MP, even in remote Arctic areas with concentrations up to 37.5 ng m-3. Cluster of polyethylene terephthalate (max. 1.5 ng m-3) were universally present. TWP (max. 35 ng m-3) and cluster of polystyrene, polypropylene, and polyurethane (max. 1.1 ng m-3) were also detected. Atmospheric transport and dispersion models, suggested the introduction of MP into the marine atmosphere equally from sea- and land-based emissions, transforming the ocean from a sink into a source for MP.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos
8.
Mar Pollut Bull ; 196: 115646, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832498

RESUMO

An increasing number of organisms from the polar regions are reported contaminated by plastic. Rarely a non-killing sampling method is used. In this study we wanted to assess plastic levels using stomach flushing and evaluate the method suitability for further research and monitoring. The stomach of 22 fulmars from Bjørnøya, Svalbard, were flushed with water in the field. On return to the laboratory, the regurgitated content was digested using potassium hydroxide. The extracted plastics were visually characterised and analysed with spectroscopy. Only three birds had plastics in their stomach, totaling 36 particles, most of them microplastics (< 5 mm). The plastic burdens are much lower than previously reported in Svalbard. The stomach flushing is assumed not to allow the collection of the gizzard content. This is a major limitation as most of the plastics accumulate in the fulmar's gizzard. However, the method is still useful for studies investigating plastic ingestion dynamics, allowing to sample the same individuals over time.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Animais , Plásticos/análise , Microplásticos/análise , Conteúdo Gastrointestinal/química , Monitoramento Ambiental/métodos , Aves , Ingestão de Alimentos , Poluentes Químicos da Água/análise
9.
Mar Pollut Bull ; 185(Pt B): 114333, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36372049

RESUMO

The northern fulmar Fulmarus glacialis ingests a larger number of (micro)plastics than many other seabirds due to its feeding habits and gut morphology. Since 2002, they are bioindicators of marine plastics in the North Sea region, and data are needed to extend the programme to other parts of their distribution areas, such as the Arctic. In this study, we provide data on ingested plastics by fulmars collected in 1997 in Kongsfjorden, Svalbard. An extraction protocol with KOH was used and for half of the birds, the gizzard and the proventricular contents were analysed separately. Ninety-one percent of the birds had ingested at least one piece of plastic with an average of 10.3 (±11.9 SD) pieces. The gizzards contained significantly more plastics than the proventriculus. Hard fragments and polyethylene were the most common characteristics. Twelve percent of the birds exceeded the EcoQO value of 0.1 g.


Assuntos
Conteúdo Gastrointestinal , Plásticos , Animais , Plásticos/análise , Conteúdo Gastrointestinal/química , Monitoramento Ambiental/métodos , Svalbard , Aves , Regiões Árticas , Polietileno/análise
10.
Sci Total Environ ; 834: 155340, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460786

RESUMO

Arctic wildlife is facing multiple stressors, including increasing plastic pollution. Seabirds are intrinsic to marine ecosystems, but most seabird populations are declining. We lack knowledge on plastic ingestion in many arctic seabird species, and there is an urgent need for more information to enable risk assessment and monitoring. Our study aimed to investigate the occurrence of plastics in glaucous gulls (Larus hyperboreus) breeding on Svalbard. The glaucous gull is a sentinel species for the health of the arctic marine ecosystem, but there have been no studies investigating plastic occurrence in this species since 1994. As a surface feeder and generalist living in an area with high human activity on Svalbard, we expected to find plastic in its stomach. We investigated for plastic >1 mm and documented plastic ingestion for the first time in glaucous gulls, with a frequency of occurrence of 14.3% (n = 21). The plastics were all identified as user plastics and consisted of polypropylene (PP) and polystyrene (PS). Our study provides new quantitative and qualitative data on plastic burden and polymer type reported in a standardized manner establishing a reference point for future research and monitoring of arctic gulls on national and international levels.


Assuntos
Charadriiformes , Poluentes Ambientais , Animais , Regiões Árticas , Documentação , Ingestão de Alimentos , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/análise , Humanos , Plásticos
11.
Sci Total Environ ; 778: 146313, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721646

RESUMO

Although it has been suggested that plastic may act as a vector for pollutants into the tissue of seabirds, the bioaccumulation of harmful contaminants, such as polybrominated diphenyl ethers (PBDEs), released from ingested plastics is poorly understood. Plastic ingestion by the procellariiform species northern fulmar (Fulmarus glacialis) is well documented. In this study, we measured PBDEs levels in liver tissue of northern fulmars without and with (0.13-0.43 g per individual) stomach plastics. PBDE concentrations in the plastic sampled from the same birds were also quantified. Birds were either found dead on beaches in southern Norway or incidentally caught in longline fisheries in northern Norway. PBDEs were detected in all birds but high concentrations were only found in liver samples from beached birds, peaking at 2900 ng/g lipid weight. We found that body condition was a significant factor explaining the elevated concentration levels in livers of beached birds. BDE209 was found in ingested plastic particles and liver tissue of birds with ingested plastics but was absent in the livers of birds without ingested plastics. This strongly suggests a plastic-derived transfer and accumulation of BDE209 to the tissue of fulmars, levels of which might prove useful as a general indicator of plastic ingestion in seabirds.


Assuntos
Éteres Difenil Halogenados , Plásticos , Animais , Aves , Monitoramento Ambiental , Conteúdo Gastrointestinal , Noruega
12.
Environ Int ; 157: 106794, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358913

RESUMO

Given the increasing attention on the occurrence of microplastics in the environment, and the potential environmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policymakers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communicating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway's involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.


Assuntos
Microplásticos , Plásticos , Poluição Ambiental/prevenção & controle , Noruega
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA