Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancer Sci ; 114(3): 1086-1094, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36341512

RESUMO

5-Aminolevulinic acid (5-ALA) is an amino acid that can be metabolized into a photosensitizer, protoporphyrin IX (PpIX) selectively in a tumor cell, permitting minimally invasive photodynamic diagnosis/therapy. However, some malignant tumor cells have excess intracellular labile iron and facilitate the conversion of PpIX into heme, which compromises the therapeutic potency of 5-ALA. Here, we examined the potential of chelation of such unfavorable intratumoral labile iron in photodynamic therapy (PDT) with 5-ALA hydrochloride, using polymeric iron chelators that we recently developed. The polymeric iron chelator efficiently inactivated the intracellular labile iron in cultured cancer cells and importantly enhanced the accumulation of PpIX, thereby improving the cytotoxicity upon photoirradiation. Even in in vivo study with subcutaneous tumor models, the polymeric iron chelator augmented the intratumoral accumulation of PpIX and the PDT effect. This study suggests that our polymeric iron chelator could be a tool for boosting the effect of 5-ALA-induced PDT by modulating tumor microenvironment.


Assuntos
Ácido Aminolevulínico , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacologia , Fármacos Fotossensibilizantes/química , Quelantes de Ferro/farmacologia , Ferro , Polímeros , Protoporfirinas , Linhagem Celular Tumoral
2.
Pharm Res ; 40(1): 157-165, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36307662

RESUMO

PURPOSE: Controlling small interfering RNA (siRNA) activity by external stimuli is useful to exert a selective therapeutic effect at the target site. This study aims to develop a technology to control siRNA activity in a thermo-responsive manner, which can be utilized even at temperatures close to body temperature. METHODS: siRNA was conjugated with a thermo-responsive copolymer that was synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and hydrophilic N,N-dimethylacrylamide (DMAA) to permit thermally controlled interaction between siRNA and an intracellular gene silencing-related protein by utilizing the coil-to-globule phase transition of the copolymer. The composition of the copolymer was fine-tuned to obtain lower critical solution temperature (LCST) around body temperature, and the phase transition behavior was evaluated. The cellular uptake and gene silencing efficiency of the copolymer-siRNA conjugates were then investigated in cultured cells. RESULTS: The siRNA conjugated with the copolymer with LCST of 38.0°C exhibited ~ 11.5 nm of the hydrodynamic diameter at 37°C and ~ 9.8 nm of the diameter at 41°C, indicating the coil-globule transition above the LCST. In line with this LCST behavior, its cellular uptake and gene silencing efficiency were enhanced when the temperature was increased from 37°C to 41°C. CONCLUSION: By fine-tuning the LCST behavior of the copolymer that was conjugated with siRNA, siRNA activity could be controlled in a thermo-responsive manner around the body temperature. This technique may offer a promising approach to induce therapeutic effects of siRNA selectively in the target site even in the in vivo conditions.


Assuntos
Temperatura Corporal , Polímeros , RNA Interferente Pequeno/genética , Temperatura , Inativação Gênica
3.
Biomacromolecules ; 21(9): 3826-3835, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786730

RESUMO

Tannic acid (TA) can form stable complexes with proteins, attracting significant attention as protein delivery systems. However, its systemic application has been limited due to nonspecific interaction. Here, we report a simple technique to prepare systemically applicable protein delivery systems using sequential self-assembly of a protein, TA, and phenylboronic acid-conjugated PEG-poly(amino acid) block copolymers in aqueous solution. Mixing the protein and TA in aqueous solution led to covering of the protein with TA, and subsequent addition of the copolymer resulted in the formation of boronate esters between TA and copolymers, constructing the core-shell-type ternary complex. The ternary complex covered with PEG exhibited a small hydrodynamic diameter of ∼10-20 nm and prevented an unfavorable interaction with serum components, thereby accomplishing significantly prolonged blood circulation and enhanced tumor accumulation in a subcutaneous tumor model. The technique utilizing supramolecular self-assembly may serve as a novel approach for designing protein delivery systems.


Assuntos
Polietilenoglicóis , Taninos , Ácidos Borônicos , Micelas , Polímeros
4.
J Control Release ; 371: 445-454, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844180

RESUMO

In boron neutron capture therapy (BNCT), boron drugs should exhibit high intratumoral boron concentrations during neutron irradiation, while being cleared from the blood and normal organs. However, it is usually challenging to achieve such tumor accumulation and quick clearance simultaneously in a temporally controlled manner. Here, we developed a polymer-drug conjugate that can actively control the clearance of the drugs from the blood. This polymer-drug conjugate is based on a biocompatible polymer that passively accumulates in tumors. Its side chains were conjugated with the low-molecular-weight boron drugs, which are immediately excreted by the kidneys, via photolabile linkers. In a murine subcutaneous tumor model, the polymer-drug conjugate could accumulate in the tumor with the high boron concentration ratio of the tumor to the surrounding normal tissue (∼10) after intravenous injection while a considerable amount remained in the bloodstream as well. Photoirradiation to blood vessels through the skin surface cleaved the linker to release the boron drug in the blood, allowing for its rapid clearance from the bloodstream. Meanwhile, the boron concentration in the tumor which was not photoirradiated could be maintained high, permitting strong BNCT effects. In clinical BNCT, the dose of thermal neutrons to solid tumors is determined by the maximum radiation exposure to normal organs. Thus, our polymer-drug conjugate may enable us to increase the therapeutic radiation dose to tumors in such a practical situation.


Assuntos
Terapia por Captura de Nêutron de Boro , Polímeros , Terapia por Captura de Nêutron de Boro/métodos , Animais , Polímeros/química , Polímeros/farmacocinética , Polímeros/administração & dosagem , Linhagem Celular Tumoral , Compostos de Boro/farmacocinética , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Luz , Feminino , Camundongos , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Boro/farmacocinética , Boro/administração & dosagem , Boro/química , Camundongos Endogâmicos BALB C , Humanos
5.
J Control Release ; 360: 928-939, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37495117

RESUMO

The success of gene therapy relies on gene nanocarriers to achieve therapeutic effects in vivo. Surface shielding of poly(ethylene glycol) (PEG), known as PEGylation, onto gene delivery carriers is a predominant strategy for extending blood circulation and improving therapeutic outcomes in vivo. Nevertheless, PEGylation frequently compromises the transfection efficiency by decreasing the interactions with the cellular membrane of the targeted cells, thereby preventing the cellular uptake and the subsequent endosomal escape. Herein, we developed a stepwise pH-responsive polyplex micelle for the plasmid DNA delivery with the surface covered by ethylenediamine-based polycarboxybetaines. This polyplex micelle switched its surface charge from neutral at pH 7.4 to positive at tumorous and endo-/lysosomal pH (i.e., pH 6.5 and 5.5, respectively), thus enhancing the cellular uptake and facilitating the endosomal escape toward efficient gene transfection. Additionally, the polyplex micelle demonstrated prolonged blood circulation as well as enhanced tumor accumulation, leading to highly effective tumor growth suppression by delivering an antiangiogenic gene. These results suggest the usefulness of a pH-responsive charge-switchable shell polymer on the surface of the polyplex micelle for the efficient nucleic acid delivery.


Assuntos
Micelas , Neoplasias , Humanos , DNA , Polímeros , Polietilenoglicóis , Transfecção , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio
6.
Biomaterials ; 293: 121987, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36584445

RESUMO

Various cancer cells overexpress L-type amino acid transporter 1 (LAT1) to take up a large number of neutral amino acids such as phenylalanine and methionine, and LAT1 transporter should be a promising target for cancer diagnosis and therapy. However, only a few studies reported drug delivery systems targeting LAT1 probably due to limited knowledge about the interaction between LAT1 and its substrate. Here, we developed polymers having methionine (Met)- or cysteine (Cys)-like structures on their side chains to examine their affinity with LAT1. While both the Met- and Cys-modified polymers exhibited efficient cellular uptake selectively in cancer cells, the Met-modified polymers exhibited higher cellular uptake efficiency in an LAT1-selective manner than the Cys-modified polymers. In the in vivo study, the intraperitoneally injected Met-modified polymers showed appreciable tumor-selective accumulation in the peritoneal dissemination model, and importantly, Met-modified polymers conjugated with photosensitizers exhibited significant therapeutic effects upon photoirradiation with reduced photochemical damage to normal organs. Our results may provide important knowledge about the polymer-LAT1 interaction, and the Met-modified polymers should offer a new concept for designing LAT1-targeting drug delivery systems.


Assuntos
Aminoácidos , Neoplasias , Humanos , Neoplasias/metabolismo , Metionina/metabolismo , Racemetionina , Sistemas de Transporte de Aminoácidos , Polímeros/metabolismo , Enxofre/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo
7.
J Control Release ; 346: 392-404, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461967

RESUMO

The Enhanced Permeability and Retention (EPR) effect is a golden strategy for the nanoparticle (NP)-based targeting of solid tumors, and the surface property of NPs might be a determinant on their targeting efficiency. Poly(ethylene glycol) (PEG) is commonly used as a shell material; however, it has been pointed out that PEG-coated NPs may exhibit accumulation near tumor vasculature rather than having homogenous intratumor distribution. The PEG shell plays a pivotal role on prolonged blood circulation of NPs but potentially impairs the intratumor retention of NPs. In this study, we report on a shell material to enhance tumor-targeted delivery of NPs by maximizing the EPR effect: polyzwitterion based on ethylenediamine-based carboxybetaine [PGlu(DET-Car)], which shows the changeable net charge responding to surrounding pH. The net charge of PGlu(DET-Car), is neutral at physiological pH 7.4, allowing it to exhibit a stealth property during the blood circulation; however, it becomes cationic for tissue-interactive performance under tumorous acidic conditions owing to the stepwise protonation behavior of ethylenediamine. Indeed, the PGlu(DET-Car)-coated NPs (i.e., gold NPs in the present study) exhibited prolonged blood circulation and remarkably enhanced tumor accumulation and retention than PEG-coated NPs, achieving 32.1% of injected dose/g of tissue, which was 4.2 times larger relative to PEG-coated NPs. Interestingly, a considerable portion of PGlu(DET-Car)-coated NPs clearly penetrated into deeper tumor sites and realized the effective accumulation in hypoxic regions, probably because the cationic net charge of PGlu(DET-Car) is augmented in more acidic hypoxic regions. This study suggests that the changeable net charge on the NP surface in response to tumorous acidic conditions is a promising strategy for tumor-targeted delivery based on the EPR effect.


Assuntos
Nanopartículas , Cátions , Linhagem Celular Tumoral , Etilenodiaminas , Nanopartículas/química , Polietilenoglicóis/química
8.
ACS Appl Mater Interfaces ; 13(46): 54850-54859, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34756033

RESUMO

The construction of enzyme delivery systems, which can control enzymatic activity at a target site, is important for efficient enzyme-prodrug therapy/diagnosis. Herein we report a facile technique to construct a systemically applicable ß-galactosidase (ß-Gal)-loaded ternary complex comprising tannic acid (TA) and phenylboronic acid-conjugated polymers through sequential self-assembly in aqueous solution. At physiological conditions, the ternary complex exhibited a hydrodynamic diameter of ∼40 nm and protected the loaded ß-Gal from unfavorable degradation by proteinase. Upon cellular internalization, the ternary complex recovered ß-Gal activity by releasing the loaded ß-Gal. The intravenously injected ternary complex thereby delivered ß-Gal to the target tumor in a subcutaneous tumor model and exerted enhanced and selective enzymatic activity at the tumor site. Sequential self-assembly with TA and phenylboronic acid-conjugated polymers may offer a novel approach for enzyme-prodrug theragnosis.


Assuntos
Ácidos Borônicos/metabolismo , Nanopartículas/metabolismo , Neoplasias/metabolismo , Polímeros/metabolismo , Taninos/metabolismo , beta-Galactosidase/metabolismo , Animais , Ácidos Borônicos/química , Linhagem Celular Tumoral , Feminino , Hidrodinâmica , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Nanopartículas/química , Neoplasias/diagnóstico , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Propriedades de Superfície , Taninos/química , beta-Galactosidase/administração & dosagem , beta-Galactosidase/sangue
9.
ACS Appl Bio Mater ; 4(10): 7402-7407, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35006695

RESUMO

Transporter ASCT2, which predominantly imports glutamine (Gln), is overexpressed in a variety of cancer cells, and targeting ASCT2 is expected to be a promising approach for tumor diagnosis and therapy. In this work, we designed a series of glutamine-modified poly(l-lysine) (PLys(Gln)) homopolymers and PEG-PLys(Gln) block copolymers and investigated their tumor-targeting abilities. With increasing degree of polymerization in the PLys(Gln) homopolymers, their cellular uptake was gradually enhanced through multivalent interactions with ASCT2. The performance of PEG-PLys(Gln) in blood circulation and tumor accumulation could be controlled by tuning of the molecular weight of PEG. Our results highlight the utility of molecular recognition in ASCT2/PLys(Gln) for tumor targeting through systemic administration.


Assuntos
Glutamina , Neoplasias , Sistema ASC de Transporte de Aminoácidos/genética , Humanos , Antígenos de Histocompatibilidade Menor/genética , Neoplasias/diagnóstico , Polímeros
10.
Biomaterials ; 235: 119804, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31991339

RESUMO

Gemcitabine (GEM) is a powerful anticancer drug for various cancers. However, the anticancer efficacy and the side effects should be addressed for effective therapeutics. To this end, we created a GEM-conjugated polymer (P-GEM) based on cyclic acetal linkage as a delivery carrier of GEM. The obtained P-GEM stably conjugated GEM at physiological pH (i.e., bloodstream), but released GEM in response to acidic environments such as endosome/lysosome. After systemic administration of P-GEM for mice bearing subcutaneous tumors, it achieved prolonged blood circulation and enhanced tumor accumulation relative to free GEM system. In addition, the polymer-drug conjugate structure of P-GEM realized effective distribution in the tumor tissues toward the induction of apoptosis in most areas of the tumor sites. Of note, the molecular design of P-GEM achieved minimal accumulation in normal tissues, resulting in negligible GEM-derived adverse effects (e.g., gastrointestinal toxicity and hematotoxicity). Ultimately, even four times smaller dose of P-GEM on a GEM basis realized comparable/higher tumor growth suppression effect for two distinct pancreatic tumor models, compared to free GEM system. The obtained results suggest the huge potential of the present design of GEM-conjugated polymer for anticancer therapeutics.


Assuntos
Acetais , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Camundongos , Polímeros , Gencitabina
11.
Sci Rep ; 7(1): 6077, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729677

RESUMO

Increased glutamine uptake toward the elevated glutaminolysis is one of the hallmarks of tumour cells. This aberrant glutamine metabolism has recently attracted considerable attention as a diagnostic and therapeutic target. Herein, we developed glutamine-functionalized polymer to achieve a selective high affinity to tumour cells overexpressing glutaminolysis-related transporter ASCT2. In in vitro study, our developed polymer exhibited faster and higher cellular uptake in tumour cells than that in normal cells. Uptake inhibition study revealed the dominant contribution of ASCT2 to the polymer-cell interaction. Furthermore, the binding affinity of the polymer to tumour cells was estimated to be comparable to that of the potent ligand molecules reported in the literature. In in vivo study, the polymer showed prolonged retention at tumour site after intratumoral injection. This study offers a novel approach for designing tumour cell-binding synthetic polymers through the recognition of dense transporters related to tumour-associated metabolism.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Polímeros , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Espaço Intracelular/metabolismo , Camundongos , Polímeros/química , Polímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA