RESUMO
OBJECTIVE: Assess the ability of an antimicrobial drug-releasing resin adhesive, containing octenidine dihydrochloride (OCT)-silica co-assembled particles (DSPs), to enhance the biostability and preserve the interfacial fracture toughness (FT) of composite restorations bonded to dentin. Enzyme-catalyzed degradation compromises the dental restoration-tooth interface, increasing cariogenic bacterial infiltration. In addition to bacterial ingress inhibition, antimicrobial-releasing adhesives may exhibit direct interfacial biodegradation inhibition as an additional benefit. METHODS: Mini short-rod restoration bonding specimens with total-etch adhesive with/without 10% wt. DSPs were made. Interfacial fracture toughness (FT) was measured as-manufactured or post-incubation in simulated human salivary esterase (SHSE) for up to 6-months. Effect of OCT on SHSE and whole saliva/bacterial enzyme activity was assessed. Release of OCT outside the restoration interface was assessed. RESULTS: No deleterious effect of DSPs on initial bonding capacity was observed. Aging specimens in SHSE reduced FT of control but not DSP-adhesive-bonded specimens. OCT inhibited SHSE degradation of adhesive monomer and may inhibit endogenous proteases. OCT inhibited bacterial esterase and collagenase. No endogenous collagen breakdown was detected in the present study. OCT increased human saliva degradative esterase activity below its minimum inhibitory concentration towards S. mutans (MIC), but inhibited degradation above MIC. OCT release outside restoration margins was below detection. SIGNIFICANCE: DSP-adhesive preserves the restoration bond through a secondary enzyme-inhibitory effect of released OCT, which is virtually confined to the restoration interface microgap. Enzyme activity modulation may produce a positive-to-negative feedback switch, by increasing OCT concentration via biodegradation-triggered release to an effective dose, then subsequently slowing degradation and degradation-triggered release.
Assuntos
Anti-Infecciosos , Colagem Dentária , Dente , Antibacterianos , Resinas Compostas , Cimentos Dentários , Dentina , Adesivos Dentinários , Esterases , Humanos , Teste de Materiais , Cimentos de ResinaRESUMO
Most dental resin composite restorations are replacements for failing restorations. Degradation of the restoration-tooth margins by cariogenic bacteria results in recurrent caries, a leading cause for restoration failure. Incorporating antimicrobial agents in dental adhesives could reduce interfacial bacterial count and reduce recurrent caries rates, inhibit interfacial degradation, and prolong restoration service life, while minimizing systemic exposure. Direct addition of antimicrobial compounds into restorative materials have limited release periods and could affect the integrity of the material. Attempts to incorporate antimicrobial within mesoporous silica nanoparticles showed theoretical promise due to their physical robustness and large available internal volume, yet yielded short-term burst release and limited therapeutic payload. We have developed novel broad-spectrum antimicrobial drug-silica particles co-assembled for long-term release and high payload incorporated into dental adhesives. The release of the drug, octenidine dihydrochloride, is modulated by the oral degradative environment and mathematically modeled to predict effective service life. Steady-state release kills cariogenic bacteria, preventing biofilm formation over the adhesive surface, with no toxicity. This novel material could extend dental restoration service life and may be applied to other long-term medical device-tissue interfaces for responsive drug release upon bacterial infection. STATEMENT OF SIGNIFICANCE: This study describes a novel dental adhesive that includes a broad-spectrum antimicrobial drug-silica co-assembled particles for long-term antimicrobial effect. The release of the drug, octenidine dihydrochloride, is modulated by the oral degradative environment and mathematically modeled to predict effective release throughout the service life of the restoration. Steady-state drug-release kills caries-forming bacteria, preventing biofilm formation over the adhesive surface, without toxicity. This novel material could extend dental restoration service life and may be applied to other long-term medical device-tissue interfaces for responsive drug release upon bacterial infection. Since recurrent cavities (caries) caused by bacteria are the major reason for dental filling failure, this development represents a significant contribution to the biomaterials field in methodology and material performance.