Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Respir Crit Care Med ; 187(5): 468-75, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23220914

RESUMO

Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.


Assuntos
Regeneração Tecidual Guiada/tendências , Doenças Respiratórias/terapia , Materiais Biocompatíveis/uso terapêutico , Diafragma , Regeneração Tecidual Guiada/métodos , Humanos , Pulmão , Transplante de Células-Tronco , Engenharia Tecidual , Alicerces Teciduais , Traqueia
2.
J Tissue Eng Regen Med ; 11(8): 2241-2249, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-26880718

RESUMO

The use of bowel tissue for urinary diversion can be associated with severe complications, and regenerative medicine may circumvent this by providing an engineered conduit. In this study, a novel tubular construct was identified for this purpose. Three constructs (diameter 15 mm) were prepared from type I collagen and either (a) a semi-biodegradable Vypro II polymer (COL-Vypro), (b) a rapidly biodegradable Vicryl polymer (COL-Vicryl) or (c) an additional collagenous layer (COL-DUAL). After freezing, lyophilization and crosslinking, all constructs showed a porous structure with a two-fold higher strength for the polymer-containing constructs. These constructs were connected to full bladder defects of 11 female pigs and evaluated after 1 (n = 4) or 3 months (n = 5). With respect to surgical handling, the polymer-containing constructs were superior. All pigs voided normally without leakage and the survival rate was 82%. For the implanted COL-Vypro constructs (8/9), stone formation was observed. COL-DUAL and COL-Vicryl showed better biocompatibility and only small remnants were found 1 month post-implantation. Histological and immunohistochemical analysis showed the best regeneration for COL-Vicryl with respect to urothelium; muscle pedicles and elastin formation were best developed in the COL-Vicryl constructs. In this study, COL-Vicryl constructs were superior in both biocompatibility and bladder tissue regeneration and have high potential for artificial urinary diversions. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Bioprótese , Teste de Materiais , Bexiga Urinária , Derivação Urinária/métodos , Animais , Colágeno Tipo I/química , Feminino , Poliglactina 910/química , Polipropilenos/química , Suínos , Bexiga Urinária/fisiopatologia , Bexiga Urinária/cirurgia
3.
Acta Biomater ; 52: 1-8, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179160

RESUMO

Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. STATEMENT OF SIGNIFICANCE: In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression and chemical crosslinking, mimicking the folding pattern observed in many tubular organs. In rest, the lumen is closed but it opens upon increase of luminal pressure, e.g. when fluids pass. Human epithelial cells seeded on the luminal side adhered well and were compatible with voiding dynamics in a bioreactor. Collagen scaffolds with radial elasticity may be useful in the regeneration of dynamic tubular organs.


Assuntos
Órgãos Bioartificiais , Colágeno Tipo I/química , Células Epiteliais/citologia , Regeneração Tecidual Guiada/instrumentação , Técnicas de Cultura de Órgãos/instrumentação , Organogênese/fisiologia , Materiais Biocompatíveis/química , Proliferação de Células/fisiologia , Células Cultivadas , Células Epiteliais/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Proteínas da Matriz Extracelular/química , Humanos , Teste de Materiais , Impressão Tridimensional , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais
4.
J Biomed Mater Res B Appl Biomater ; 102(4): 756-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24843887

RESUMO

Current methods for closure of congenital diaphragmatic hernia using patches are unsatisfactory, and novel collagen-based scaffolds have been developed, and successfully applied in a rat model. However, for translation to the human situation constructs must be evaluated in larger animal models. We developed collagen scaffolds enforced with Vicryl, loaded either with or without the muscle stimulatory growth factor insulin-like growth factor 1 (IGF1). We describe our steps to a surgical method to implant these scaffolds into a diaphragmatic defect in 1.5­3 week old lambs, and evaluate the scaffolds 6 months after implantation. Omentum was attached to the scaffold. At sacrifice, eventration of the implantation site was observed in all animals with a thin layer of tissue separating the abdomen from the thorax. Histologically, no scaffold remnants could be observed. Fatty tissue surrounded by fibrous tissue was seen, resembling encapsulated omentum, with collagen-rich tissue present between this tissue and the original diaphragmatic muscle. Outcomes were not different for scaffolds with or without IGF1. In conclusion, the scaffolds integrated well into the surrounding tissue, but slower degrading materials are needed to prevent eventrations.


Assuntos
Colágeno , Diafragma/cirurgia , Poliglactina 910 , Alicerces Teciduais , Animais , Diafragma/ultraestrutura , Modelos Animais de Doenças , Implantes Experimentais , Fator de Crescimento Insulin-Like I/administração & dosagem , Fator de Crescimento Insulin-Like I/uso terapêutico , Microscopia Eletrônica de Varredura , Omento/cirurgia , Polipropilenos , Testes de Função Respiratória , Ovinos , Telas Cirúrgicas , Técnicas de Sutura , Cicatrização
5.
Tissue Eng Part C Methods ; 20(5): 423-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24099067

RESUMO

A clinical demand exists for alternatives to repair the esophagus in case of congenital defects, cancer, or trauma. A seamless biocompatible off-the-shelf large-diameter tubular scaffold, which is accessible for vascularization, could set the stage for regenerative medicine of the esophagus. The use of seamless scaffolds eliminates the error-prone tubularization step, which is necessary when emanating from flat scaffolds. In this study, we developed and characterized three different types of seamless tubular scaffolds, and evaluated in vivo tissue compatibility, including vascularization by omental wrapping. Scaffolds (luminal Ø âˆ¼ 1.5 cm) were constructed using freezing, lyophilizing, and cross-linking techniques and included (1) single-layered porous collagen scaffold, (2) dual-layered (porous+dense) collagen scaffold, and (3) hybrid scaffold (collagen+incorporated polycaprolacton knitting). The latter had an ultimate tensile strength comparable to a porcine esophagus. To induce rapid vascularization, scaffolds were implanted in the omentum of sheep using a wrapping technique. After 6 weeks of biocompatibility, vascularization, calcification, and hypoxia were evaluated using immunohistochemistry. Scaffolds were biocompatible, and cellular influx and ingrowth of blood vessels were observed throughout the whole scaffold. No calcification was observed, and slight hypoxic conditions were detected only in the direct vicinity of the polymer knitting. It is concluded that seamless large-diameter tubular collagen-based scaffolds can be constructed and vascularized in vivo. Such scaffolds provide novel tools for esophageal reconstruction.


Assuntos
Colágeno/farmacologia , Esôfago/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres/farmacologia , Medicina Regenerativa/métodos , Alicerces Teciduais/química , Animais , Bovinos , Esôfago/efeitos dos fármacos , Omento/efeitos dos fármacos , Omento/fisiologia , Implantação de Prótese , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA